Fused deposition modeling (FDM) three-dimensional (3D) printing is the process of forming a part by depositing molten thermoplastic materials layer by layer. Support structures need to be added below the overhangs or bridges in 3D printing. This paper proposes an idea for support-free FDM printing by studying the method of filament levitation. In this paper, an ultrasonic phased array device is designed, and different slender objects with length much longer than the sound wavelength are levitated in the air by multiple standing wave points. Experiments show that slender objects can be stably held at the sound pressure nodes in the standing wave field. After adding the ultrasonic field in FDM printing, the maximum deformation of single filament due to gravity on the bridge structure decreases from 5 to 2 mm. This proves that it is feasible for an ultrasonic phased array system to play an important role in the field of support-free FDM printing.

1.
X. T.
Zhang
,
X. Y.
Le
,
A.
Panotopoulou
,
E.
Whiting
, and
C. C. L.
Wang
, “
Perceptual models of preference in 3D printing direction
,”
ACM Trans. Graph.
34
,
1
12
(
2015
).
2.
J.
Vanek
,
J. A. G.
Galicia
, and
B.
Benes
, “
Clever support: Efficient support structure generation for digital fabrication
,”
Graphics Forum
33
,
117
125
(
2015
).
3.
E.
Vouga
,
M.
Höbinger
,
J.
Wallner
, and
H.
Pottmann
, “
Design of self-supporting surfaces
,”
ACM Trans. Graph.
31
,
1
11
(
2012
).
4.
M.
Deuss
,
D.
Panozzo
,
E.
Whiting
,
L.
Yang
, and
M.
Pauly
, “
Assembling self-supporting structures
,”
ACM Trans. Graph.
33
,
1
10
(
2014
).
5.
J.
Dumas
,
J.
Hergel
, and
S.
Lefebvre
, “
Bridging the gap: Automated steady scaffoldings for 3D printing
,”
ACM Trans. Graph.
33
,
1
10
(
2014
).
6.
K.
Hu
,
S.
Jin
, and
C. C. L.
Wang
, “
Support slimming for single material based additive manufacturing
,”
Comput. Aided Des.
65
,
1
10
(
2015
).
7.
J.
Wu
,
C. C. L.
Wang
,
X.
Zhang
, and
R.
Westermann
, “
Self-supporting rhombic infill structures for additive manufacturing
,”
Comput. Aided Des.
80
,
32
42
(
2016
).
8.
Y.
Liu
,
H.
Pan
,
J.
Snyder
,
W.
Wang
, and
B.
Guo
, “
Computing self-supporting surfaces by regular triangulation
,”
ACM Trans. Graph.
32
,
1
10
(
2013
).
9.
K.
Yasusi
, “
3D-printing plates without ‘Support’
,”
Int. J. Chem. Mol. Nucl. Mater. Metallurg. Eng.
9
,
568
574
(
2015
); available at https://www.researchgate.net/publication/28065841.
10.
L.
Luo
,
I.
Baran
,
S.
Rusinkiewicz
, and
W.
Matusik
, “
Chopper: Partitioning models into 3D-printable parts
,”
ACM Trans. Graph.
31
,
1
9
(
2012
).
11.
W. M.
Wang
,
C.
Zanni
, and
L.
Kobbelt
, “
Improved surface quality in 3D printing by optimizing the printing direction
,”
Comput. Graph. Forum.
35
,
59
70
(
2016
).
12.
S.
Rosales
,
S.
Ferrándiz
,
M. J.
Reig
, and
J.
Seguí
, “
Study of soluble supports generation in 3D printed part
,”
Procedia Manuf.
13
,
833
839
(
2017
).
13.
D.
Chelsea
,
S.
Vignesh
,
T. G.
Matthew
,
R. S.
Jeffrey
, and
R. B.
Fred
, Jr.
, “
Experimental desktop 3D printing using dual extrusion and water-soluble polyvinyl alcohol
,”
Rapid Prototyp. J.
21
,
528
534
(
2015
).
14.
M. A. B.
Andrade
and
J. C.
Adamowski
, “
Acoustic radiation force on a sphere in an acoustic levitation device
,” in
Proceedings of the 2016 IEEE International Ultrasonics Symposium (IUS)
, Tours, France (September 18–21,
2016
).
15.
F. J.
Trujillo
,
P.
Juliano
,
G.
Barbosa-Cánovas
, and
K.
Knoerzer
, “
Separation of suspensions and emulsions via ultrasonic standing waves—A review
,”
Ultrason. Sonochem.
21
,
2151
2164
(
2014
).
16.
K. H.
Lam
,
H. S.
Hsu
,
Y.
Li
,
C.
Lee
,
A.
Lin
,
Q.
Zhou
,
E. S.
Kim
, and
K. K.
Shung
, “
Ultrahigh frequency lensless ultrasonic transducers for acoustic tweezers application
,”
Biotechnol. Bioeng.
110
,
881
886
(
2013
).
17.
W. J.
Xie
,
C. D.
Cao
,
L. Y.
,
Z. Y.
Hong
, and
B.
Wei
, “
Acoustic method for levitation of small living animals
,”
Appl. Phys. Lett.
89
,
214102
(
2006
).
18.
R.
Morales
,
A.
Marzo
,
S.
Subramanian
, and, and
D. M.
Plasencia
, “
LeviProps: Animating levitated optimized fabric structures using holographic acoustic tweezers
,” in
Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology
,
651
661
(
2019
).
19.
D.
Foresti
,
M.
Nabavi
,
M.
Klingauf
,
A.
Ferrari
, and
D.
Poulikakos
, “
Acoustophoretic contactless transport and handling of matter in air
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
12549
12554
(
2013
).
20.
A.
Marzo
,
A.
Barnes
, and
B. W.
Drinkwater
, “
TinyLev: A multi-emitter single-axis acoustic levitator
,”
Rev. Sci. Instrum.
88
,
085105
085106
(
2017
).
21.
C. R. P.
Courtney
,
B. W.
Drinkwater
,
C. E. M.
Demore
,
S.
Cochran
,
A.
Grinenko
, and
P. D.
Wilcox
, “
Dexterous manipulation of microparticles using Bessel-function acoustic pressure fields
,”
Appl. Phys. Lett.
102
,
123508
(
2013
).
22.
A.
Marzo
,
S. A.
Seah
,
B. W.
Drinkwater
,
D. R.
Sahoo
,
B.
Long
, and
S.
Subramanian
, “
Holographic acoustic elements for manipulation of levitated objects
,”
Nat. Commun.
6
,
1
7
(
2015
).
23.
Y.
Ochiai
,
T.
Hoshi
, and
J.
Rekimoto
, “
Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays
,”
PLoS One
9
,
e97590
e97595
(
2014
).
24.
A.
Marzo
,
T.
Corkett
, and
B. W.
Drinkwater
, “
Ultraino: An open phased-array system for narrowband airborne ultrasound transmission
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
65
(
1
),
102
111
(
2018
).
You do not currently have access to this content.