For the manipulation of microparticles, ultrasonic devices, which employ acoustophoretic forces, have become an essential tool. There exists a widely used analytical expression in the literature which does not account for the effect of the geometry and acoustic properties of the chip material to calculate the acoustophoretic force and resonance frequencies. In this study, we propose an analytical relationship that includes the effect of the chip material on the resonance frequencies of an acoustophoretic chip. Similar to the analytical equation in the literature, this approach also assumes plane wave propagation. The relationship is simplified to a form which introduces a correction term to the acoustophoretic force equation for the presence of the chip material. The proposed equations reveal that the effect of the chip material on the resonance frequency is significant—and is called the device resonance—for acoustically soft materials. The relationship between the actuation modes of the piezoelectric actuator(s) and position of the nodal lines inside the channel are discussed. Finite element simulations are performed to verify the proposed equations. Simulations showed that even if some of the assumptions in the derivations are removed, the general conclusions about the motion of the microparticles are still valid.

1.
Adams
,
J. D.
,
Ebbesen
,
C. L.
,
Barnkob
,
R.
,
Yang
,
A. H. J.
,
Soh
,
H. T.
, and
Bruus
,
H.
(
2012
). “
High-throughput, temperature-controlled microchannel acoustophoresis device made with rapid prototyping
,”
J. Micromech. Microeng.
22
(
7
),
075017
.
2.
Baasch
,
T.
, and
Dual
,
J.
(
2018
). “
Acoustofluidic particle dynamics: Beyond the Rayleigh limit
,”
J. Acoust. Soc. Am.
143
(
1
),
509
519
.
3.
Bruus
,
H.
(
2012
). “
Acoustofluidics 7: The acoustic radiation force on small particles
,”
Lab Chip
12
,
1014
1021
.
4.
Buyukkocak
,
S.
,
Ozer
,
M. B.
, and
Cetin
,
B.
(
2014
). “
Numerical modeling of ultrasonic particle manipulation for microfluidic applications
,”
Microfluid. Nanofluid.
17
(
6
),
1025
1037
.
5.
Cetin
,
B.
,
Oner
,
S. D.
, and
Baranoglu
,
B.
(
2017
). “
Modeling of dielectrophoretic particle motion: Point particle vs finite-sized particle
,”
Electrophoresis
38
,
1407
1418
.
6.
Cetin
,
B.
,
Ozer
,
M. B.
,
Cagatay
,
E.
, and
Buyukkocak
,
S.
(
2016
). “
An integrated acoustic and dielectrophoretic particle manipulation in a microfluidic device for particle wash and separation fabricated by mechanical machining
,”
Biomicrofluidics
10
,
014112
.
7.
Cetin
,
B.
,
Ozer
,
M. B.
, and
Solmaz
,
M. E.
(
2014
). “
Microfluidic bio-particle manipulation for biotechnology
,”
Biochem. Eng. J.
92
,
63
82
.
8.
Connacher
,
W.
,
Zhang
,
N.
,
Huang
,
A.
,
Mei
,
J.
,
Zhang
,
S.
,
Gopesh
,
T.
, and
Friend
,
J.
(
2018
). “
Micro/nano acoustofluidics: Materials, phenomena, design, devices, and applications
,”
Lab Chip
18
,
1952
1996
.
9.
Dow
,
P.
,
Kotz
,
K.
,
Gruszka
,
S.
,
Holder
,
J.
, and
Fiering
,
J.
(
2018
). “
Acoustic separation in plastic microfluidics for rapid detection of bacteria in blood using engineered bacteriophage
,”
Lab Chip
18
,
923
932
.
10.
Foresti
,
D.
,
Nabavi
,
M.
,
Klingauf
,
M.
,
Ferrari
,
A.
, and
Poulikakos
,
D.
(
2013
). “
Acoustophoretic contactless transport and handling of matter in air
,”
Proc. Natl Acad. Sci. U.S.A.
110
,
12549
12554
.
11.
Gautam
,
G. P.
,
Burger
,
T.
,
Wilcox
,
A.
,
Cumbo
,
M. J.
,
Graves
,
S. W.
, and
Piyasena
,
M. E.
(
2018
). “
Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells
,”
Anal. Bioanal. Chem.
410
(
14
),
3385
3394
.
12.
Gorkov
,
L. P.
(
1962
). “
On the forces acting on a small particle in an acoustic field in an ideal fluid
,”
Dokl. Akad. Nauk SSSR
6
,
773
776
.
13.
Lenshof
,
A.
,
Evander
,
M.
,
Laurell
,
T.
, and
Nilsson
,
J.
(
2012a
). “
Acoustofluidics 5: Building microfluidic acoustic resonators
,”
Lab Chip
12
(
4
),
684
695
.
14.
Lenshof
,
A.
,
Magnusson
,
C.
, and
Laurell
,
T.
(
2012b
). “
Acoustofluidics 8: Applications of acoustophoresis in continuous flow microsystems
,”
Lab Chip
12
,
1210
1223
.
15.
Lissandrello
,
C.
,
Dubay
,
R.
,
Kotz
,
K. T.
, and
Fiering
,
J.
(
2018
). “
Purification of lymphocytes by acoustic separation in plastic microchannels
,”
SLAS Technol.
23
(
4
),
352
363
.
16.
Moiseyenko
,
R. P.
, and
Bruus
,
H.
(
2019
). “
Whole-system ultrasound resonances as the basis for acoustophoresis in all-polymer microfluidic devices
,”
Phys. Rev. Appl.
11
,
014014
.
17.
Mueller
,
A.
,
Lever
,
A.
,
Nguyen
,
T. V.
,
Comolli
,
J.
, and
Fiering
,
J.
(
2013
). “
Continuous acoustic separation in a thermoplastic microchannel
,”
J. Micromech. Microeng.
23
(
12
),
125006
.
18.
Petersson
,
F.
,
Aberg
,
L.
,
Sward-Nilsson
,
A.-M.
, and
Laurell
,
T.
(
2007
). “
Free flow acoustophoresis: Microfluidic-based mode of particle and cell separation
,”
Anal. Chem.
79
(
14
),
5117
5123
.
19.
Şahin
,
M. A.
,
Çetin
,
B.
, and
Özer
,
M. B.
(
2019
). “
Investigation of effect of design and operating parameters on acoustophoretic particle separation via 3D device-level simulations
,”
Microfluid. Nanofluid.
24
(
1
),
8
.
20.
Sarvazyan
,
A.
(
2010
). “
Diversity of biomedical applications of acoustic radiation force
,”
Ultrasonics
50
(
2
),
230
234
.
21.
Savage
,
W. J.
,
Burns
,
J. R.
, and
Fiering
,
J.
(
2017
). “
Safety of acoustic separation in plastic devices for extracorporeal blood processing
,”
Transfusion
57
(
7
),
1818
1826
.
22.
Silva
,
R.
,
Dow
,
P.
,
Dubay
,
R.
,
Lissandrello
,
C.
,
Holder
,
J.
,
Densmore
,
D.
, and
Fiering
,
J.
(
2017
). “
Rapid prototyping and parametric optimization of plastic acoustofluidic devices for blood–bacteria separation
,”
Biomed. Microdev.
19
(
3
),
70
.
23.
Toftul
,
I. D.
,
Bliokh
,
K. Y.
,
Petrov
,
M. I.
, and
Nori
,
F.
(
2019
). “
Acoustic radiation force and torque on small particles as measures of the canonical momentum and spin densities
,”
Phys. Rev. Lett.
123
,
183901
.
24.
Wu
,
J.
(
1991
). “
Acoustical tweezers
,”
J. Acoust. Soc. Am.
89
(
5
),
2140
2143
.
25.
Wu
,
M.
,
Ozcelik
,
A.
,
Rufo
,
J.
,
Wang
,
Z.
,
Fang
,
R.
, and
Jun Huang
,
T.
(
2019
). “
Acoustofluidic separation of cells and particles
,”
Microsyst. Nanoeng.
5
(
1
),
32
.

Supplementary Material

You do not currently have access to this content.