The study of gas bubbles in liquid media is of importance in many areas of research. Gas bubbles are often studied using in situ measurement techniques; however, acoustic inversion techniques have also been used to extract physical properties of gas bubbles. These inversion techniques rely on existing analytical scattering models; however, these models often assume that the gas bubbles are spherical in shape and have an equivalent bubble radius, a, that is small compared to the incident acoustic wavelength (ka ≪ 1), which is not always valid. This study aims to understand how the departure from these assumptions affects the acoustic backscattering cross section, σbs, of non-spherical gas bubbles. Experimental estimates of σbs of non-spherical gas bubbles of different sizes, with ka values ranging between 0.03 and 4.4, were compared to four commonly known analytical σbs models. All models performed equally at predicting σbs for ka smaller than 0.5; however, there was no model that better predicted the experimental estimates of σbs for ka larger than 0.5, regardless of bubble shape. Large variabilities in the experimental estimates of σbs are observed for ka larger than 0.5, which are caused by the variability in bubble shape and size, as well as the bubble's orientation.

1.
Adelman
,
R.
,
Gumerov
,
N. A.
, and
Duraiswami
,
R.
(
2014
). “
Software for computing the spheroidal wave functions using arbitrary precision arithmetic
,” arXiv:1408.0074.
2.
Ainslie
,
M. A.
, and
Leighton
,
T. G.
(
2009
). “
Near resonant bubble acoustic cross-section corrections, including examples form oceanography, volcanology, and biomedical ultrasound
,”
J. Acoust. Soc. Am.
126
(
5
),
2163
2175
.
3.
Al-Masry
,
W. A.
,
Ali
,
E. M.
, and
Aqeel
,
Y. M.
(
2005
). “
Determination of bubble characteristics in bubble columns using statistical analysis of acoustic sound measurements
,”
Chem. Eng. Res. Des.
83
(
10
),
1196
1207
.
4.
Anderson
,
V. C.
(
1950
). “
Sound scattering from a fluid sphere
,”
J. Acoust. Soc. Am.
22
(
4
),
426
431
.
5.
Baik
,
K.
,
Leighton
,
T. G.
, and
Jiang
,
J.
(
2014
). “
Investigation of a method for real time quantification of gas bubbles in pipelines
,”
J. Acoust. Soc. Am
136
(
2
),
502
513
.
6.
Bhaga
,
D.
, and
Weber
,
M.
(
1981
). “
Bubbles in viscous liquids: Shapes, wakes and velocities
,”
J. Fluid Mech.
105
,
61
85
.
7.
Blomberg
,
A. E. A.
,
Sæbø
,
T. O.
,
Hansen
,
R. E.
,
Pedersen
,
R. B.
, and
Austeng
,
A.
(
2017
). “
Automatic detection of marine gas seeps using an interferometric sidescan sonar
,”
IEEE J. Ocean. Eng.
42
(
3
),
590
602
.
8.
Bouaifi
,
M.
,
Hebrard
,
G.
,
Bastoul
,
D.
, and
Roustan
,
M.
(
2001
). “
A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas-liquid reactor and bubble columns
,”
Chem. Eng. Process.
40
(
2
),
97
111
.
9.
Burdic
,
W. S.
(
1991
).
Underwater Acoustic System Analysis
, 2nd ed. (
Prentice Hall
,
Englewood Cliffs, NJ
), pp.
328
331
.
10.
Chatterjee
,
D.
,
Jain
,
P.
, and
Sarkar
,
K.
(
2005
). “
Ultrasound-mediated destruction of contrast microbubbles used for medical imaging and drug delivery
,”
Phys. Fluids
17
(
10
),
100603
100608
.
11.
Clay
,
C. S.
, and
Medwin
,
H.
(
1977
).
Acoustical Oceanography: Principles and Applications
(
Wiley
,
New York
), pp.
461
-
466
.
12.
Clift
,
R.
,
Weber
,
M.
, and
Grace
,
J.
(
1978
).
Bubbles, Drops and Particles
(
Academic
,
New York
), pp.
26
-
27
.
13.
Commander
,
K. W.
, and
Prosperetti
,
A.
(
1989
). “
Linear pressure waves in bubbly liquids: Comparison between theory and experiments
,”
J. Acoust. Soc. Am.
85
(
2
),
732
746
.
14.
Deane
,
G. B.
(
2016
). “
The performance of high-frequency doppler sonars in actively breaking wave crests
,”
IEEE J. Ocean. Eng.
41
(
4
),
1028
1034
.
15.
Deane
,
G. B.
, and
Stokes
,
M. D.
(
1999
). “
Air entrainment processes and bubble size distributions in the surf zone
,”
J. Phys. Oceanogr.
29
(
7
),
1393
1403
.
16.
Deane
,
G. B.
, and
Stokes
,
M. D.
(
2002
). “
Scale dependence of bubble creation mechanisms in breaking waves
,”
Nature
418
(
6900
),
839
844
.
17.
Demer
,
D. A.
,
Berger
,
L.
,
Bernasconi
,
M.
,
Bethke
,
E.
,
Boswell
,
K.
,
Chu
,
D.
,
Domokos
,
R.
,
Dunford
,
A.
,
Fässler
,
S.
,
Gauthier
,
S.
,
Hufnagle
,
L. T.
,
Jech
,
J. M.
,
Bouffant
,
N.
,
Lebourges-Dhaussy
,
A.
,
Lurton
,
X.
,
Macaulay
,
G. J.
,
Perrot
,
Y.
,
Ryan
,
T.
,
Parker-Stetter
,
S.
,
Stienessen
,
S.
,
Weber
,
T.
, and
Williamson
,
N.
(
2015
). “
Calibration of acoustic instruments
,”
ICES Cooperative Research Report No. 326
(
International Council for the Exploration of the Sea
,
Copenhagen, Denmark
).
18.
Desai
,
P. D.
,
Ng
,
W. C.
,
Hines
,
M. J.
,
Riaz
,
Y.
,
Tesar
,
V.
, and
Zimmerman
,
W. B.
(
2019
). “
Comparison of bubble size distributions inferred from acoustic, optical visualisation, and laser diffraction
,”
Colloids Interfaces
3
(
4
),
65-1
65-20
.
19.
Devin
,
C.
, Jr.
(
1959
). “
Survey of thermal, radiation, and viscous damping of pulsating air bubbles in water
,”
J. Acoust. Soc. Am.
31
(
12
),
1654
1667
.
20.
Dollet
,
D.
,
Van Der Meer
,
S. M.
,
Garbin
,
V.
,
de Jong
,
N.
,
Lohse
,
D.
, and
Versluis
,
M.
(
2008
). “
Nonspherical oscillations of ultrasound contrast agent microbubbles
,”
Ultrasound Med. Biol.
34
(
9
),
1465
1473
.
21.
Farmer
,
D. M.
, and
Lemon
,
D. D.
(
1984
). “
The influence of bubbles on ambient noise in the ocean at high wind speeds
,”
J. Phys. Oceanogr.
14
(
11
),
1762
1778
.
22.
Farmer
,
D. M.
,
Vagle
,
S.
, and
Booth
,
A. D.
(
1998
). “
A free-flooding acoustical resonator for measurement of bubble size distributions
,”
J. Atmos. Ocean. Technol.
15
(
5
),
1132
1146
.
23.
Flammer
,
C.
(
1957
).
Spheroidal Wave Functions
(
Dover
,
New York
), p.
11
.
24.
Frinking
,
P. J.
,
de Jong
,
N.
, and
Cespedes
,
E. I.
(
1999
). “
Scattering properties of encapsulated gas bubbles at high ultrasound pressures
,”
J. Acoust. Soc. Am.
105
(
3
),
1989
1996
.
25.
Furusawa
,
M.
(
1988
). “
Prolate spheroidal models for predicting general trends of fish target strength
,”
J. Acoust. Soc. Jpn. (E)
9
(
1
),
13
24
.
26.
Gonzalez
,
J. D.
,
Lavia
,
E. F.
, and
Blanc
,
S.
(
2016
). “
A computational method to calculate the exact solution for acoustic scattering by fluid spheroids
,”
Acta Acust. United Acust.
102
(
6
),
1061
1071
.
27.
Greinert
,
J.
,
Artemov
,
Y.
,
Egorov
,
V.
,
De Batist
,
M.
, and
McGinnis
,
D.
(
2006
). “
1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: Hydroacoustic characteristics and temporal variability
,”
Earth Planet. Sci. Lett.
244
(
1
),
1
15
.
28.
Greinert
,
J.
, and
Nützel
,
B.
(
2004
). “
Hydroacoustic experiments to establish a method for the determination of methane bubble fluxes at cold seeps
,”
Geo-Mar. Lett.
24
,
75
85
.
29.
Jech
,
J. M.
,
Horne
,
J. K.
,
Chu
,
D.
,
Demer
,
D. A.
,
Francis
,
D. T. I.
,
Gorska
,
N.
,
Jones
,
B.
,
Lavery
,
A. C.
,
Stanton
,
T. K.
,
Macaulay
,
G. J.
,
Reeder
,
D. B.
, and
Sawada
,
K.
(
2015
). “
Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research
,”
J. Acoust. Soc. Am.
138
(
6
),
3742
3764
.
30.
Judd
,
A. G.
(
2004
). “
Natural seabed gas seeps as sources of atmospheric methane
,”
Environ. Geol.
46
(
8
),
988
996
.
31.
Kapodistrias
,
G.
, and
Dahl
,
P. H.
(
2012
). “
Scattering measurements from a dissolving bubble
,”
J. Acoust. Soc. Am.
131
(
6
),
4243
4251
.
32.
Laakkonen
,
M.
,
Alopaeus
,
V.
, and
Aittamaa
,
J.
(
2006
). “
Validation of bubble breakage, coalescence and mass transfer models for gas-liquid dispersion in agitated vessel
,”
Chem. Eng. Sci.
61
(
1
),
218
228
.
33.
Lau
,
Y. M.
,
Sujatha
,
K. T.
,
Gaeini
,
M.
,
Deen
,
N. G.
, and
Kuipers
,
J. A. M.
(
2013
). “
Experimental study of the bubble size distribution in a pseudo-2D bubble column
,”
Chem. Eng. Sci.
98
,
203
211
.
34.
Lavery
,
A. C.
,
Wiebe
,
P. H.
,
Stanton
,
T. K.
,
Lawson
,
G. L.
,
Benfield
,
M. C.
, and
Copley
,
N.
(
2007
). “
Determining dominant scatterers of sound in mixed zooplankton populations
,”
J. Acoust. Soc. Am.
122
(
6
),
3304
3326
.
35.
Lawson
,
G. L.
,
Wiebe
,
P. H.
,
Ashjian
,
C. J.
,
Gallager
,
S. M.
,
Davis
,
C. S.
, and
Warren
,
J. D.
(
2004
). “
Acoustically-inferred zooplankton distribution in relation to hydrography west of the Antarctic Peninsula
,”
Deep Sea Res. Part II Top. Stud. Oceangr.
51
(
17
),
2041
2072
.
36.
Lee
,
J. H.
,
Park
,
C. S.
, and
Shin
,
Y. H.
(
2018
). “
Destructive frequency of oblate spheroidal air-balloon for suppression of propeller cavitation induced hull excitation
,”
J. Acoust. Soc. Am.
144
(
1
),
186
197
.
37.
Lide
,
D.
(
1998
).
CRC Handbook of Chemistry and Physics, 1998-1999
, 79th ed. (
CRC Press
,
Boca Raton, FL
), pp.
1
-
2496
.
38.
Liu
,
R. H.
,
Yang
,
J.
,
Pindera
,
M. Z.
,
Athavale
,
M.
, and
Grodzinski
,
P.
(
2002
). “
Bubble-induced acoustic micromixing
,”
Lab Chip
2
(
3
),
151
157
.
39.
Loranger
,
S.
,
Pederson
,
G.
, and
Weber
,
T. C.
(
2019
). “
Broadband acoustic scattering from oblate hydrocarbon droplets
,”
J. Acoust. Soc. Am.
146
(
2
),
1176
1188
.
40.
Majumder
,
S. K.
,
Kundu
,
G.
, and
Mukherjee
,
D.
(
2006
). “
Bubble size distribution and gas-liquid interfacial area in a modified downflow bubble column
,”
Chem. Eng.
122
(
1
),
1
10
.
41.
Mallock
,
H. R. A.
(
1910
). “
The damping of sound by frothy liquids
,”
Proc. R. Soc. Lond. A
84
(
572
),
391
395
.
42.
McGinnis
,
D. F.
,
Greinert
,
J.
,
Artemov
,
Y.
,
Beaubien
,
S. E.
, and
Wüest
,
A.
(
2006
). “
Fate of rising methane bubbles in stratified waters: How much methane reached the atmosphere?
J. Geophys. Res. Oceans
111
(
C9
),
1
15
, .
43.
Minnaert
,
M.
(
1933
). “
On musical air-bubbles and the sounds of running water
,”
Philos. Mag.
16
(
104
),
235
248
.
44.
Monahan
,
E. C.
, and
Lu
,
M.
(
1990
). “
Acoustically relevant bubble assemblages and their dependence on meteorological parameters
,”
IEEE J. Ocean. Eng.
15
(
4
),
340
349
.
45.
Padilla
,
A. M.
,
Loranger
,
S.
,
Kinnaman
,
F. S.
,
Valentine
,
D. L.
, and
Weber
,
T. C.
(
2019
). “
Modern assessment of natural hydrocarbon gas flux at the coal oil point seep field, Santa Barbara, California
,”
J. Geophys. Res. Oceans
124
(
4
),
2472
2484
, .
46.
Prosperetti
,
A.
(
1977
). “
Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids
,”
J. Acoust. Soc. Am.
61
(
1
),
17
27
.
47.
Rayleigh
,
J. W. S. B.
(
1945
).
The Theory of Sound
, Vol.
II
, 2nd ed. (
Dover
,
New York
), pp.
236
284
.
48.
Römer
,
M.
,
Sahling
,
H.
,
Pape
,
T.
,
Bohrmann
,
G.
, and
Spieß
,
V.
(
2012
). “
Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan)
,”
J. Geophys. Res. Ocean
117
(
C10
),
C10015
, .
49.
Rychert
,
K. M.
, and
Weber
,
T. C.
(
2020
). “
Tests of acoustic target strength and bubble dissolution models using a synthetic bubble generator
,”
J. Atmos. Ocean Technol.
37
,
129
140
.
50.
Sage
,
K. A.
,
George
,
J.
, and
Überall
,
H.
(
1979
). “
Multipole resonances in sound scattering from gas bubbles in a liquid
,”
J. Acoust. Soc. Am.
65
(
6
),
1413
1422
.
51.
Sam
,
A.
,
Gomez
,
C. O.
, and
Finch
,
J. A.
(
1996
). “
Axial velocity profiles of single bubbles in water/frother solutions
,”
Int. J. Miner. Process.
47
(
3
),
177
196
.
52.
Sawada
,
K.
,
Ye
,
Z.
,
Kieser
,
R.
,
McFarlane
,
G. A.
,
Miyanohana
,
Y.
, and
Furusawa
,
M.
(
1999
). “
Target strength measurements and modeling of walleye pollock and Pacific hake
,”
Fish. Sci.
65
(
2
),
193
205
.
53.
Schäfer
,
R.
,
Merten
,
C.
, and
Eigenberger
,
G. J. E. T.
(
2002
). “
Bubble size distributions in a bubble column reactor under industrial conditions
,”
Exp. Them. Fluid Sci.
26
(
6
),
595
604
.
54.
Schneider von Deimling
,
J.
,
Rehder
,
G.
,
Greinert
,
J.
,
McGinnis
,
D. F.
,
Boetius
,
A.
, and
Linke
,
P.
(
2011
). “
Quantification of seep-related methane gas emissions at Tommeliten, North Sea
,”
Cont. Shelf Res.
31
(
7
),
867
878
.
55.
Shah
,
Y. T.
,
Kelkar
,
B. G.
,
Godbole
,
S. P.
, and
Deckwer
,
W. D.
(
1982
). “
Design parameters estimations for bubble column reactors
,”
AIChE J.
28
(
3
),
353
379
.
56.
Stanton
,
T. K.
,
Chu
,
D.
, and
Wiebe
,
P. H.
(
1998
). “
Sound scattering by several zooplankton groups. II. Scattering models
,”
J. Acoust. Soc. Am.
103
(
1
),
236
253
.
57.
Tomiyama
,
A.
,
Celata
,
G. P.
,
Hosokawa
,
S.
, and
Yoshida
,
S.
(
2002
). “
Terminal velocity of single bubbles in surface tension force dominant regime
,”
Int. J. Multiph. Flow
28
(
9
),
1497
1519
.
58.
Turin
,
G.
(
1960
). “
An introduction to matched filters
,”
IRE Trans. Inf. Theory
6
(
3
),
311
329
.
59.
Urick
,
R. J.
(
1983
).
Principles of Underwater Sound
(
McGraw-Hill
,
New York
), p.
294
.
60.
Vagle
,
S.
, and
Farmer
,
D. M.
(
1992
). “
The measurement of bubble-size distributions by acoustical backscatter
,”
J. Atmos. Ocean Technol.
9
(
5
),
630
644
.
61.
Wang
,
B.
, and
Socolofsky
,
S. A.
(
2015
). “
A deep-sea, high-speed, stereoscopic imaging system for in situ measurement of natural seep bubble and droplet characteristics
,”
Deep Sea Res. Part I Oceanogr. Res. Pap.
104
,
134
148
.
62.
Wang
,
B.
,
Socolofsky
,
S. A.
,
Breier
,
J. A.
, and
Seewald
,
J. S.
(
2016
). “
Observations of bubbles in natural seeps flares at MC 118 and GC 600 using in situ quantitative imaging
,”
J. Geophys. Res. Oceans
121
(
4
),
2203
2230
, .
63.
Weber
,
T. C.
,
De Robertis
,
A.
,
Greenaway
,
S. F.
,
Smith
,
S.
,
Mayer
,
L.
, and
Rice
,
G.
(
2012
). “
Estimating oil concentration and flow rate with calibrated vessel-mounted acoustic echo sounders
,”
Proc. Natl. Acad. Sci. U.S.A
109
(
50
),
20240
20245
.
64.
Weber
,
T. C.
,
Mayer
,
L.
,
Jerram
,
K.
,
Beaudoin
,
J.
,
Rzhanov
,
Y.
, and
Lovalvo
,
D.
(
2014
). “
Acoustic estimates of methane gas flux from the seabed in a 6000 km2 region in the Northern Gulf of Mexico
,”
Geochem. Geophys. Geosyst.
15
(
5
),
1911
1925
.
65.
Weber
,
T. C.
, and
Ward
,
L. G.
(
2015
). “
Observations of backscatter from sand and gravel seafloors between 170 and 250 kHz
,”
J. Acoust. Soc. Am.
138
(
4
),
2169
2180
.
66.
Weidner
,
E.
,
Weber
,
T. C.
,
Mayer
,
L.
,
Jakobsson
,
M.
,
Chernykh
,
D.
, and
Semiletov
,
I.
(
2019
). “
A wideband acoustic method for direct assessment of bubble-mediated methane flux
,”
Cont. Shelf Res.
173
,
104
115
.
67.
Yeh
,
C.
(
1964
). “
The diffraction of sound waves by penetrable disks
,”
Ann. Phys. (Berl.)
468
(
1
),
53
61
.
68.
Yeh
,
C.
(
1967
). “
Scattering of acoustic waves by a penetrable prolate spheroid. I. Liquid prolate spheroid
,”
J. Acoust. Soc. Am.
42
(
2
),
518
521
.
69.
Zheng
,
L.
, and
Yapa
,
P. D.
(
2000
). “
Buoyant velocity of spherical and nonspherical bubbles/droplets
,”
J. Hydraul. Eng.
126
(
11
),
852
854
.
You do not currently have access to this content.