The acoustic resonances of radiatively damped air bubbles in water near reflecting boundaries are investigated by representing the bubble and its image by two bubbles in a full space, ensonified by two incident fields. Results obtained using an analytic monopole theory are compared with those of a coupled spherical harmonic technique and a boundary element method. Near a rigid boundary, the resonance frequency is reduced, and the response characteristics are determined by the predominant monopolar character of the individual bubble motion, with small changes in peak amplitude and Q. Near a sound-soft boundary, a higher frequency proximity resonance is observed. The monopole field is cancelled out, and the response is determined by higher-order scattering modes, giving very high values of Q. While the individual bubble scattering level increases significantly, the overall scattering is less than for two uncoupled bubbles. For bubble separations of 8–28 radii, all three approaches predict essentially identical results for both boundary types. For bubble separations less than one radius, the monopole theory, which does not include higher-order scattering modes, diverges from the boundary element and coupled spherical harmonic methods, whose high-accuracy determinations of resonance frequencies and amplitudes agree to within 0.1%.

1.
Anderson
,
V. C.
(
1950
). “
Sound scattering from a fluid sphere
,”
J. Acoust. Soc. Am.
22
(
4
),
426
431
.
2.
Betcke
,
T.
,
van 't Wout
,
E.
, and
Gélat
,
P.
(
2017
). “
Computationally efficient boundary element methods for high-frequency Helmholtz problems in unbounded domains
,” in
Modern Solvers for Helmholtz Problems
(
Springer
,
New York
), pp.
215
243
.
3.
Clay
,
C. S.
, and
Medwin
,
H.
(
1977
).
Acoustical Oceanography: Principles and Applications
(
Wiley
,
New York
).
4.
Devin
,
C.
, Jr.
(
1959
). “
Survey of thermal, radiation, and viscous damping of pulsating air bubbles in water
,”
J. Acoust. Soc. Am.
31
(
12
),
1654
1667
.
5.
Edmonds
,
A. R.
(
1996
).
Angular Momentum in Quantum Mechanics
(
Princeton University
,
Princeton, NJ
).
6.
Feuillade
,
C.
(
1995
). “
Scattering from collective modes of air bubbles in water and the physical mechanism of superresonances
,”
J. Acoust. Soc. Am.
98
(
2
),
1178
1190
.
7.
Feuillade
,
C.
(
2001
). “
Acoustically coupled gas bubbles in fluids: Time-domain phenomena
,”
J. Acoust. Soc. Am.
109
(
6
),
2606
2615
.
8.
Foote
,
K. G.
, and
Francis
,
D. T.
(
2002
). “
Comparing Kirchhoff-approximation and boundary-element models for computing gadoid target strengths
,”
J. Acoust. Soc. Am.
111
(
4
),
1644
1654
.
9.
Gaunaurd
,
G. C.
, and
Huang
,
H.
(
1995
). “
Acoustic scattering by an air-bubble near the sea surface
,”
IEEE J. Oceanic Eng.
20
(
4
),
285
292
.
10.
Gumerov
,
N. A.
, and
Duraiswami
,
R.
(
2002
). “
Computation of scattering from n spheres using multipole reexpansion
,”
J. Acoust. Soc. Am.
112
(
6
),
2688
2701
.
11.
Gumerov
,
N. A.
, and
Duraiswami
,
R.
(
2009
). “
A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation
,”
J. Acoust. Soc. Am.
125
(
1
),
191
205
.
12.
Hackbusch
,
W.
(
2015
).
Hierarchical Matrices: Algorithms and Analysis
(
Springer
,
New York
).
13.
Haqshenas
,
S.
,
Gélat
,
P.
,
van 't Wout
,
E.
,
Betcke
,
T.
, and
Saffari
,
N.
(
2021
). “
A fast full-wave solver for calculating ultrasound propagation in the body
,”
Ultrasonics
110
,
106240
.
14.
Heller
,
E.
(
1996
). “
Quantum proximity resonances
,”
Phys. Rev. Lett.
77
(
20
),
4122
4125
.
15.
Hersch
,
J.
, and
Heller
,
E.
(
1998
). “
Observation of proximity resonances in a parallel-plate waveguide
,”
Phys. Rev. Lett.
81
(
15
),
3059
3062
.
16.
Leighton
,
T.
(
2012
).
The Acoustic Bubble
(
Academic
,
New York
).
17.
Li
,
S.
, and
Heller
,
E. J.
(
2003
). “
Quantum multiple scattering: Eigenmode expansion and its applications to proximity resonance
,”
Phys. Rev. A
67
(
3
),
032712
.
18.
Lim
,
R.
, and
Hackman
,
R. H.
(
1992
). “
A formulation of multiple scattering by many bounded obstacles using a multicentered, T supermatrix
,”
J. Acoust. Soc. Am.
91
(
2
),
613
638
.
19.
Medwin
,
H.
(
2005
).
Sounds in the Sea: From Ocean Acoustics to Acoustical Oceanography
(
Cambridge University
,
Cambridge, England
).
20.
Medwin
,
H.
, and
Clay
,
C. S.
(
1997
).
Fundamentals of Acoustical Oceanography
(
Academic
,
New York
).
21.
Minnaert
,
M.
(
1933
). “
On musical air-bubbles and the sounds of running water
,”
Lond. Edinb. Dubl. Philos. Mag. J. Sci.
16
(
104
),
235
248
.
22.
Morse
,
P.
, and
Feshbach
,
H.
(
1953
).
Methods of Theoretical Physics
(
McGraw-Hill
,
New York
).
23.
Nédélec
,
J.-C.
(
2001
).
Acoustic and Electromagnetic Equations—Integral Representations for Harmonic Problems
(
Springer
,
New York
).
24.
Oguz
,
H. N.
, and
Prosperetti
,
A.
(
1990
). “
Bubble oscillations in the vicinity of a nearly plane free surface
,”
J. Acoust. Soc. Am.
87
(
5
),
2085
2092
.
25.
Peterson
,
B.
, and
Ström
,
S.
(
1974
). “
Matrix formulation of acoustic scattering from an arbitrary number of scatterers
,”
J. Acoust. Soc. Am.
56
(
3
),
771
780
.
26.
Poggio
,
A.
, and
Miller
,
E.
(
1973
). “
Integral equation solutions of three-dimensional scattering problems
,” in
Computer Techniques for Electromagnetics
, edited by
R.
Mittra
, International Series of Monographs in Electrical Engineering (
Pergamon
,
New York
), Chap. 4, pp.
159
264
.
27.
Skaropoulos
,
N. C.
,
Yagridou
,
H. D.
, and
Chrissoulidis
,
D. P.
(
2003
). “
Interactive resonant scattering by a cluster of air bubbles in water
,”
J. Acoust. Soc. Am.
113
(
6
),
3001
3011
.
28.
Śmigaj
,
W.
,
Betcke
,
T.
,
Arridge
,
S.
,
Phillips
,
J.
, and
Schweiger
,
M.
(
2015
). “
Solving boundary integral problems with BEM++
,”
ACM Trans. Math. Softw.
41
(
2
),
1
40
.
29.
Strasberg
,
M.
(
1953
). “
The pulsation frequency of nonspherical gas bubbles in liquids
,”
J. Acoust. Soc. Am.
25
(
3
),
536
537
.
30.
Tolstoy
,
I.
(
1986
). “
Superresonant systems of scatterers. I
,”
J. Acoust. Soc. Am.
80
(
1
),
282
294
.
31.
Tolstoy
,
I.
(
1987
). “
Properties of superresonant systems of spherical scatterers
,”
IEEE J. Ocean. Eng.
12
(
2
),
327
332
.
32.
Tolstoy
,
I.
, and
Tolstoy
,
A.
(
1988
). “
Superresonant systems of scatterers. II
,”
J. Acoust. Soc. Am.
83
(
6
),
2086
2096
.
33.
Tolstoy
,
I.
, and
Tolstoy
,
A.
(
1990
). “
Line and plane arrays of resonant monopole scatterers
,”
J. Acoust. Soc. Am.
87
(
3
),
1038
1043
.
34.
Valier-Brasier
,
T.
, and
Conoir
,
J.-M.
(
2019
). “
Resonant acoustic scattering by two spherical bubbles
,”
J. Acoust. Soc. Am.
145
(
1
),
301
311
.
35.
Waterman
,
P.
(
1965
). “
Matrix formulation of electromagnetic scattering
,”
Proc. IEEE
53
(
8
),
805
812
.
36.
Ye
,
Z.
, and
Feuillade
,
C.
(
1997
). “
Sound scattering by an air bubble near a plane sea surface
,”
J. Acoust. Soc. Am.
102
(
2
),
798
805
.
You do not currently have access to this content.