Measurements of acoustic properties of sound absorbing materials in impedance tubes show poor reproducibility, which was demonstrated in round robin tests. The impedance tube measurements are standardized but lack precise definitions of the actual measurement setup, specimen preparation, and other factors that introduce uncertainty in practice. In this paper, machine learning models identify those factors that mostly affect the sound absorption coefficient from a large data set of more than 3000 absorption spectra measured in one impedance tube. The specimens are manufactured from one polyurethane foam, and different cutting technologies, different operators, different specimen diameters, different specimen thicknesses, and two different approaches to mount the specimens in the impedance tube are considered. Explainable machine learning techniques allow the identification and quantification of the most influential factors and, furthermore, the frequency ranges that are the most affected by the choice of these setup factors. The results indicate that besides the specimen thickness, also the operator affects the absorption coefficient by a directional and non-random relationship. Hence, it needs to be controlled carefully. The method proves to be a promising pathway for knowledge discovery from acoustic measurement data using explainability approaches for machine learning models.

1.
Allard
,
J.
, and
Atalla
,
N.
(
2009
).
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
, 2nd ed. (
John Wiley & Sons
,
West Sussex, UK
).
2.
Bonfiglio
,
P.
,
Pompoli
,
F.
,
Horoshenkov
,
K. V.
,
Rahim
,
M. I. B. A.
,
Jaouen
,
L.
,
Rodenas
,
J.
,
Bécot
,
F.-X.
,
Gourdon
,
E.
,
Jaeger
,
D.
,
Kursch
,
V.
,
Tarello
,
M.
,
Roozen
,
N. B.
,
Glorieux
,
C.
,
Ferrian
,
F.
,
Leroy
,
P.
,
Vangosa
,
F. B.
,
Dauchez
,
N.
,
Foucart
,
F.
,
Lei
,
L.
,
Carillo
,
K.
,
Doutres
,
O.
,
Sgard
,
F.
,
Panneton
,
R.
,
Verdiere
,
K.
,
Bertolini
,
C.
,
Bär
,
R.
,
Groby
,
J.-P.
,
Geslain
,
A.
,
Poulain
,
N.
,
Rouleau
,
L.
,
Guinault
,
A.
,
Ahmadi
,
H.
, and
Forge
,
C.
(
2018
). “
How reproducible are methods to measure the dynamic viscoelastic properties of poroelastic media?
,”
J. Sound Vib.
428
,
26
43
.
3.
Cummings
,
A.
(
1991
). “
Impedance tube measurements on porous media: The effects of air-gaps around the sample
,”
J. Sound Vib.
151
(
1
),
63
75
.
4.
Fulcher
,
B. D.
, and
Jones
,
N. S.
(
2017
). “
hctsa: A computational framework for automated time-series phenotyping using massive feature extraction
,”
Cell Syst.
5
(
5
),
527
531.e3
.
5.
Grebel
,
A.
(
2020
). “
Unsicherheiten bei der bestimmung der schallabsorption mithilfe des kundt'schen rohres” (“Uncertainty in absorption measurements in impedance tubes”)
, Ph.D. thesis,
Technical University of Darmstadt
,
Darmstadt, Germany
.
6.
Guyon
,
I.
, and
Elisseeff
,
A.
(
2003
). “
An introduction to variable and feature selection
,”
J. Mach. Learn. Res.
3
,
1157
1182
.
7.
Horoshenkov
,
K. V.
,
Khan
,
A.
,
Bécot
,
F.-X.
,
Jaouen
,
L.
,
Sgard
,
F.
,
Renault
,
A.
,
Amirouche
,
N.
,
Pompoli
,
F.
,
Prodi
,
N.
,
Bonfiglio
,
P.
,
Pispola
,
G.
,
Asdrubali
,
F.
,
Hübelt
,
J.
,
Atalla
,
N.
,
Amédin
,
C. K.
,
Lauriks
,
W.
, and
Boeckx
,
L.
(
2007
). “
Reproducibility experiments on measuring acoustical properties of rigid-frame porous media (round-robin tests)
,”
J. Acoust. Soc. Am.
122
(
1
),
345
353
.
8.
Inoue
,
N.
, and
Sakuma
,
T.
(
2017
). “
Numerical investigation of effect of support conditions of poroelastic materials in impedance tube measurement
,”
Acoust. Sci. Technol.
38
(
4
),
213
221
.
9.
ISO 10534-2
(
1998
). “
Determination of sound absorption coefficient and impedance in impedance tubes—part 2: Transfer-function method
,”
International Organization for Standardization
,
Geneva, Switzerland
.
10.
ISO 18437-5:2011
(
2011
). “
Mechanical vibration and shock—characterization of the dynamic mechanical properties of visco-elastic materials—part 5: Poisson ratio based on comparison between measurements and finite element analysis
,”
International Organization for Standardization
,
Geneva, Switzerland
.
11.
Kang
,
Y. J.
, and
Bolton
,
J. S.
(
1995
). “
Finite element modeling of isotropic elastic porous materials coupled with acoustical finite elements
,”
J. Acoust. Soc. Am.
98
(
1
),
635
643
.
12.
Kellner
,
L.
,
Stender
,
M.
,
von Bock und Polach
,
R. U. F.
,
Herrnring
,
H.
,
Ehlers
,
S.
,
Hoffmann
,
N.
, and
Høyland
,
K. V.
(
2019
). “
Establishing a common database of ice experiments and using machine learning to understand and predict ice behavior
,”
Cold Regions Sci. Technol.
162
,
56
73
.
13.
Kingma
,
D. P.
, and
Ba
,
J.
(
2017
). “
Adam: A method for stochastic optimization
,” arXiv:1412.6980.
14.
Kino
,
N.
,
Nakano
,
G.
, and
Suzuki
,
Y.
(
2012
). “
Non-acoustical and acoustical properties of reticulated and partially reticulated polyurethane foams
,”
Appl. Acoust.
73
(
2
),
95
108
.
15.
Kino
,
N.
, and
Ueno
,
T.
(
2007
). “
Investigation of sample size effects in impedance tube measurements
,”
Appl. Acoust.
68
(
11
),
1485
1493
.
16.
Lipton
,
Z. C.
(
2018
). “
The mythos of model interpretability
,”
Queue
16
(
3
),
31
57
.
17.
Lundberg
,
S. M.
, and
Lee
,
S.-I.
(
2017
). “
A unified approach to interpreting model predictions
,” in
Advances in Neural Information Processing Systems 30
, edited by
I.
Guyon
,
U. V.
Luxburg
,
S.
Bengio
,
H.
Wallach
,
R.
Fergus
,
S.
Vishwanathan
, and
R.
Garnett
(
Curran Associates, Inc.
,
Red Hook, NY
), pp.
4765
4774
.
18.
Montgomery
,
D.
(
2009
).
Design and Analysis of Experiments
, 7th ed. (
John Wiley & Sons
,
Hoboken, NJ
).
19.
Pilon
,
D.
,
Panneton
,
R.
, and
Sgard
,
F.
(
2003
). “
Behavioral criterion quantifying the edge-constrained effects on foams in the standing wave tube
,”
J. Acoust. Soc. Am.
114
(
4
),
1980
1987
.
20.
Pilon
,
D.
,
Panneton
,
R.
, and
Sgard
,
F.
(
2004
). “
Behavioral criterion quantifying the effects of circumferential air gaps on porous materials in the standing wave tube
,”
J. Acoust. Soc. Am.
116
(
1
),
344
356
.
21.
Pompoli
,
F.
,
Bonfiglio
,
P.
,
Horoshenkov
,
K. V.
,
Khan
,
A.
,
Jaouen
,
L.
,
Bécot
,
F.-X.
,
Sgard
,
F.
,
Asdrubali
,
F.
,
D'Alessandro
,
F.
,
Hübelt
,
J.
,
Atalla
,
N.
,
Amédin
,
C. K.
,
Lauriks
,
W.
, and
Boeckx
,
L.
(
2017
). “
How reproducible is the acoustical characterization of porous media?
,”
J. Acoust. Soc. Am.
141
(
2
),
945
955
.
22.
Ribeiro
,
M. T.
,
Singh
,
S.
, and
Guestrin
,
C.
(
2016
). “
Why should I trust you?
,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD '16
, edited by
B.
Krishnapuram
,
M.
Shah
,
A.
Smola
,
C.
Aggarwal
,
D.
Shen
, and
R.
Rastogi
(
ACM Press
,
New York
), pp.
1135
1144
.
23.
Seybert
,
A. F.
,
Hua
,
X.
, and
Herrin
,
D. W.
(
2013
). “
Controlling uncertainty of sound absorption measurements using the impedance tube method
,” in
Proceedings of Internoise 2013
, September 15–18, Innsbruck, Austria, p.
217
.
24.
Song
,
B. H.
, and
Bolton
,
J. S.
(
2003
). “
Investigation of the vibrational modes of edge-constrained fibrous samples placed in a standing wave tube
,”
J. Acoust. Soc. Am.
113
(
4
),
1833
1849
.
25.
Song
,
B. H.
,
Bolton
,
J. S.
, and
Kang
,
Y. J.
(
2001
). “
Effect of circumferential edge constraint on the acoustical properties of glass fiber materials
,”
J. Acoust. Soc. Am.
110
(
6
),
2902
2916
.
26.
Stanley
,
D. R.
(
2012
). “
Impedance tube specimen preparation and mounting issues
,” in
Proceedings of Internoise 2012
, August 19–22, New York, p.
1360
.
27.
Stender
,
M.
,
Adams
,
C.
,
Wedler
,
M.
,
Grebel
,
A.
, and
Hoffmann
,
N.
(
2020
). “
Code accompanying the paper: Explainable machine learning determines effects on the sound absorption coefficient measured in the impedance tube
,” https://github.com/TUHH-DYN/ExplainableML_acoustics (Last viewed March 9, 2021).
28.
Stone
,
M.
(
1974
). “
Cross-validatory choice and assessment of statistical predictions
,”
J. R. Stat. Soc. Series B Stat. Methodol.
36
(
2
),
111
133
.
29.
Tsay
,
H.-S.
, and
Yeh
,
F.-H.
(
2006
). “
The influence of circumferential edge constraint on the acoustical properties of open-cell polyurethane foam samples
,”
J. Acoust. Soc. Am.
119
(
5
),
2804
2814
.
30.
Vigran
,
T. E.
,
Kelders
,
L.
,
Lauriks
,
W.
,
Leclaire
,
P.
, and
Johansen
,
T.
(
1997
). “
Prediction and measurements of the influence of boundary conditions in a standing wave tube
,”
Acta Acust. United Acust.
83
(
3
),
419
423
.
31.
Wenzel
,
S.
,
Slomski
,
E. M.
,
Adams
,
C.
, and
Melz
,
T.
(
2020
). “
Bestimmung der Einflüsse von Störgrößen auf die Absorptionsgradmessung im Kundtschen Rohr mithilfe neuronaler Netze” (“Determination of the influence of disturbance variables on the absorption coefficient measurement in the Kundt's tube using neural networks”)
, in
Proceedings of DAGA 2020—46. Jahrestagung Für Akustik
,
DEGA
,
Berlin
, pp.
551
554
.
You do not currently have access to this content.