Although human speech radiation has been a subject of considerable interest for decades, researchers have not previously measured its directivity over a complete sphere with high spatial and spectral resolution using live phonetically balanced passages. The research reported in this paper addresses this deficiency by employing a multiple-capture transfer function technique and spherical harmonic expansions. The work involved eight subjects and 2522 unique sampling positions over a 1.22 or 1.83 m sphere with 5° polar and azimuthal-angle increments. The paper explains the methods and directs readers to archived results for further exploration, modeling, and speech simulation in acoustical environments. Comparisons of the results to those of a KEMAR head-and-torso simulator, lower-resolution single-capture measurements, other authors' work, and basic symmetry expectations all substantiate their validity. The completeness and high resolution of the measurements offer insights into spherical speech directivity patterns that will aid researchers in the speech sciences, architectural acoustics, audio, and communications.

1.
AES56-2008 (r2019)
:
AES Standard on Acoustics: Sound Source Modeling: Loudspeaker Polar Radiation Measurements
(
Audio Engineering Society
,
New York
,
2019
).
2.
CLF Group
, “
CLF: A common loudspeaker format
,”
Syn-Aud-Con Newsl.
32
(
4
),
14
17
(
2004
).
3.
EASE SpeakerLab Software Manual, Rev. 1.0 (Ahnert Feistel Media Group
, Berlin,
2016
), http://www.afmg-support.eu/SoftwareDownloadBase/AFMG/EASE%20SpeakerLab/EASE%20SpeakerLab%20User's%20Guide.pdf (Last viewed July 24, 2020).
4.
F.
Trendelenburg
, “
Beitrag zur Frage der Stimmrichtwirkung” (“Contribution to the question of voice directivity”)
,
Z. Tech. Phys.
10/11
,
558
563
(
1929
).
5.
H. K.
Dunn
and
D. W.
Farnsworth
, “
Exploration of pressure field around the human head during speech
,”
J. Acoust. Soc. Am.
10
(
1
),
184
199
(
1939
).
6.
A.
Moreno
and
J.
Pfretzschner
, “
Human head directivity in speech emission: A new approach
,”
Acoust. Lett.
1
,
78
84
(
1978
).
7.
G.
Studebaker
, “
Directivity of the human vocal source in the horizontal plane
,”
Ear Hear.
6
(
6
),
315
319
(
1985
).
8.
F. S.
McKendree
, “
Directivity indices of human talkers in English speech
,”
Proceedings of Inter-Noise 86
, Cambridge, MA (July 21–23,
1986
), pp.
911
916
.
9.
A. C. C.
Warnock
,
W. T.
Chu
, and
J.-C.
Guy
, “
Directivity of human talkers
,”
Can. Acoust.
30
(
3
),
36
37
(
2002
).
10.
T.
Chu
and
A. C. C.
Warnock
, “
Detailed directivity of sound fields around human talkers
,”
Research Report IRC-RR-104
(Institute for Research in Construction, National Research Council of Canada, Ottawa ON, Canada (
2002
), pp.
1
47
.
11.
B. F. G.
Katz
,
F.
Prezat
, and
C.
d'Alessandro
, “
Human voice phoneme directivity pattern measurements
,”
J. Acoust. Soc. Am.
120
,
3359
(
2006
); for the presentation slides see https://www.researchgate.net/profile/Brian_Katz5/publication/236213231_Human_voice_phoneme_directivity_pattern_measurements/links/565d69b708aeafc2aac781c6/Human-voice-phoneme-directivity-pattern-measurements.pdf (Last viewed July 24, 2020).
12.
P.
Kocon
and
B. B.
Monson
, “
Horizontal directivity patterns differ between vowels extracted from running speech
,”
J. Acoust. Soc. Am.
144
(
1
),
EL7
EL13
(
2018
).
13.
B. F. G.
Katz
and
C.
d'Alessandro
, “
Measurement of 3D phoneme-specific radiation patterns in speech and singing
,” Scientific Report [Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Orsay, France, 2007], https://rs2007.limsi.fr/PS_Page_14.html (Last viewed July 24,
2020
).
14.
B. B.
Monson
,
E. J.
Hunter
, and
B. H.
Story
, “
Directivity of low- and high-frequency energy in speech and singing
,”
J. Acoust. Soc. Am.
132
(
1
),
433
441
(
2012
).
15.
A. H.
Marshall
and
J.
Meyer
, “
The directivity and auditory impressions of singers
,”
Acustica
58
,
130
140
(
1985
).
16.
B. F. G.
Katz
and
C.
d'Alessandro
, “
Directivity measurements of the singing voice
,”
Proceedings of the 19th International Congress on Acoustics
, Madrid, Spain (September 2–7,
2007
), Vol.
4
, pp.
1976
1981
.
17.
H.
Niese
, “
Untersuchung über die Knallform bei raumakustischen Impulsmessungen” (“Investigation of the bang shape in room acoustic impulse measurements”)
,
Hochfrequenztechn. Elektroak.
65
(
3
),
98
108
(
1956
).
18.
H. F.
Olson
, “
Field-type artificial voice
,”
J. Audio Eng. Soc.
20
(
6
),
446
452
(
1972
).
19.
F.
Bozzoli
and
A.
Farina
, “
Directivity balloons of real and artificial mouth simulators for measurement of the speech transmission index
,”
Proceedings of the 115th Convention of the Audio Engineering Society
, New York (October 10–13,
2003
), paper 5953.
20.
F.
Bozzoli
,
M.
Viktorovitch
, and, and
A.
Farina
, “
Balloons of directivity of real and artificial mouth used in determining speech transmission index
,”
Proceedings of the 118th Convention of the Audio Engineering Society
, Barcelona, Spain (May 28–31,
2005
), paper 6492.
21.
F.
Bozzoli
,
P.
Bilzi
, and
A.
Farina
, “
Influence of artificial mouth's directivity in determining speech transmission index
,”
Proceedings of the 119th Convention of the Audio Engineering Society
, New York (October 7–10,
2005
), paper 6571.
22.
T.
Halkosaari
, “
Radiation directivity of human and artificial speech
,” M.S. thesis,
Helsinki University of Technology
,
Espoo, Finland
,
2004
.
23.
T.
Halkosaari
and
M.
Vaalgamaa
, “
Directivity of human and artificial speech
,”
Proceedings of the Joint Baltic-Nordic Acoustics Meeting 2004
, Mariehamn, Åland, Finland (June 8–10,
2004
).
24.
T.
Halkosaari
,
M.
Vaalgamaa
, and
M.
Karjalainen
, “
Directivity of artificial and human speech
,”
J. Audio Eng. Soc.
53
(
7/8
),
620
631
(
2005
).
25.
H.
Jers
and
M.
Kob
, “
Nachbildung eines Chores für raumakustische und musikalische Untersuchungen” (“Simulation of a choir for room acoustic and musical investigations”)
,
Proceedings of 20. Tonmeistertagung
, Karlsruhe, Germany (November 20–23,
1998
), pp.
208
217
.
26.
M.
Kob
and
H.
Jers
, “
Directivity measurement of a singer
,”
Collected Papers from the Joint Meeting Berlin 1999: 137th Regular Meeting of the Acoustical Society of America, 2nd Convention of the European Acoustics Association, Forum Acusticum 1999, Integrating the 25th German Acoustics DAGA Conference
, Berlin, Germany (March 14–19,
1999
), paper 2aMU19.
27.
H.
Jers
, “
Directivity measurements of adjacent singers in a choir
,”
Proceedings of the 19th International Congress on Acoustics
, Madrid, Spain (September 2–7,
2007
).
28.
D.
Cabrera
,
P. J.
Davis
, and
A.
Connolly
, “
Long-term horizontal vocal directivity of opera singers: Effects of singing projection and acoustic environment
,”
J. Voice
25
(
6
),
e291
e303
(
2011
).
29.
M.
Brandner
,
M.
Frank
, and
D.
Rudrich
, “
DirPat: Database and viewer of 2D/3D directivity patterns of sound sources and receivers
,”
Proceedings of the 144th Convention of the Audio Engineering Society
, Milan, Italy (May 23–26,
2018
), e-Brief 425.
30.
G.
Stewart
, “
The acoustic shadow of a rigid sphere with certain applications in architectural acoustics and audition
,”
Phys. Rev.
33
(
6
),
467
479
(
1911
).
31.
K.
Sugiyama
and
H.
Irii
, “
Comparison of the sound pressure radiation from a prolate spheroid and the human mouth
,”
Acustica
73
(
5
),
271
276
(
1991
).
32.
C.
Pörschmann
and
J. M.
Arend
, “
Analyzing the directivity patterns of human speakers
,”
Proceedings of the 46th DAGA 2020
, Hannover, Germany (
2020
), pp.
1141
1144
.
33.
J. L.
Flanagan
, “
Analog measurements of sound radiation from the mouth
,”
J. Acoust. Soc. Am.
32
(
12
),
1613
1620
(
1960
).
34.
J.
Huopaniemi
,
K.
Kettunen
, and
J.
Rahkonen
, “
Measurements and modeling techniques for directional sound radiation from the mouth
,”
Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
, New Paltz, NY (October 17–20,
1999
). pp.
183
186
.
35.
D.
Todorovic
, “
Effect of head cover on directivity pattern of human head
,”
Proceedings of Forum Acusticum 2005
, Budapest, Hungary (August 29–September 2, 2005), pp.
L193
L198
.
36.
C.
Pörschmann
and
J. M.
Arend
, “
A method for spatial upsampling of directivity patterns of human speakers by directional equalization
,”
Proceedings of the 45th DAGA 2019
, Rostock, Germany (
2019
). pp.
1458
1461
.
37.
R.
Blandin
,
A.
Van Hirtum
,
X.
Pelorson
, and
R.
Laboissière
, “
Influence of higher order acoustical propagation modes on variable section waveguide directivity: Application to vowel [a]
,”
Acta Acust. Unit. Acust.
102
,
918
929
(
2016
).
38.
R.
Blandin
,
A.
Van Hirtum
,
X.
Pelorson
, and
R.
Laboissière
, “
The effect on vowel directivity patterns of higher order propagation modes
,”
J. Sound Vib.
432
,
621
632
(
2018
).
39.
M.
Brandner
,
R.
Blandin
,
M.
Frank
, and
A.
Sontacchi
, “
A pilot study on the influence of mouth configuration and torso on singing voice directivity
,”
J. Acoust. Soc. Am.
148
(
3
),
1169
1180
(
2020
).
40.
B. A.
Bartlett
, “
Tonal effects of close microphone placement
,”
J. Audio Eng. Soc.
29
(
10
),
726
738
(
1981
).
41.
E. B.
Brixen
, “
Spectral degradation of speech captured by miniature microphones mounted on persons' head and chest
,”
Proceedings of the 100th Convention of the Audio Engineering Society
, Copenhagen, Denmark (May 11–14,
1996
), paper 4284.
42.
E. B.
Brixen
, “
Near-field registration of the human voice: Spectral changes due to positions
,”
Proceedings of the 104th Convention of the Audio Engineering Society
, Amsterdam, Netherlands (May 16–19,
1998
), paper 4728.
43.
E. M.
Lai
,
G. A.
Carrijo
,
R.
Bennett
,
R.
Togneri
,
M.
Alder
, and
Y.
Attikiouzel
, “
An English language speech database at the University of Western Australia
,”
Proceedings of the ICASSP IEEE International Conference on Acoustics, Speech, and Signal Processing
, Albuquerque, NM (April 3–6,
1990
), paper S2.17, pp.
101
104
.
44.
E. J.
Hunter
,
L. C.
Cantor-Cutiva
,
E.
van Leer
,
M.
van Mersbergen
,
C. D.
Nanjundeswaran
,
P.
Bottalico
,
M. J.
Sandage
, and
S.
Whitling
, “
Toward a consensus description of vocal effort, vocal load, vocal loading, and vocal fatigue
,”
J. Speech Lang. Hear. Res.
63
,
509
532
(
2020
).
45.
P.
Bottalico
, “
Speech adjustments for room acoustics and their effects on vocal effort
,”
J. Voice
31
(
3
),
392.e1
392.e12
(
2017
).
46.
B. T.
Thornock
,
T. W.
Leishman
,
B. E.
Anderson
, and
J. J.
Esplin
, “
Effects of simultaneous sound arrivals on direction-of-arrival estimates of the polar energy time curve
,”
Appl. Acoust.
117
,
167
172
(
2017
).
47.
P. D.
Welch
, “
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
,”
IEEE Trans. Audio Electroacoust.
15
(
2
),
70
73
(
1967
).
48.
J. S.
Bendat
and
A. G.
Piersol
,
Random Data: Analysis and Measurement Procedures
, 4th ed. (
Wiley
,
Hoboken, NJ
,
2010
), Sec. 1.4, Ch. 6, Sec. 11.5.
49.
K. G.
McConnell
and
P. S.
Varoto
,
Vibration Testing: Theory and Practice
, 2nd ed. (
Wiley
,
Hoboken, NJ
,
2008
), Sec. 5.6.
50.
J. S.
Bendat
and
A. G.
Piersol
,
Engineering Applications of Correlation and Spectral Analysis
, 2nd ed. (
Wiley
,
New York
,
1993
), Chs. 4, 9, 11.
51.
D. P.
Jarrett
,
E. A. P.
Habets
, and
P. A.
Naylor
,
Theory and Applications of Spherical Microphone Array Processing
(
Springer International
,
Switzerland
,
2017
), p.
15
.
52.
F. W. J.
Olver
,
D. W.
Lozier
,
R. F.
Boisvert
, and
C. W.
Clark
,
NIST Handbook of Mathematical Functions
(
Cambridge University Press
,
Cambridge, United Kingdom
,
2010
), Ch. 14.
53.
R. A.
Kennedy
and
P.
Sadeghi
,
Hilbert Space Methods in Signal Processing
(
Cambridge University Press
,
Cambridge, United Kingdom
,
2013
), p.
189
.
54.
B.
Rafaely
,
Fundamentals of Spherical Array Processing
, 2nd ed. (
Springer Nature
,
Cham, Swizerland
,
2019
), Ch. 3.
55.
S. D.
Bellows
and
T. W.
Leishman
, “
Spherical harmonic expansions of high-resolution musical instrument directivities
,”
Proc. Mtgs. Acoust.
35
,
035005
(
2018
).
56.
T. W.
Leishman
,
S.
Rollins
, and
H. M.
Smith
, “
An experimental evaluation of regular polyhedron loudspeakers as omnidirectional sources of sound
,”
J. Acoust. Soc. Am.
120
(
3
),
1411
1422
(
2006
).
57.
W.
Ahnert
,
J.
Raird
,
S.
Feistel
, and
P.
Meyer
, “
Accurate electroacoustic prediction utilizing the complex frequency response of far-field polar measurements
,”
Proceedings of the 108th Convention of the Audio Engineering Society
, Paris, France (February 19–22,
2000
), paper 5129.
58.
S.
Feistel
and
W.
Ahnert
, “
Modeling of loudspeaker systems using high-resolution data
,”
J. Audio Eng. Soc.
55
(
7/8
),
571
597
(
2007
).
59.
S.
Bellows
and
T.
Leishman
, “
High-resolution analysis of the directivity factor and directivity index functions of human speech
,”
Proceedings of the 146th Convention of the Audio Engineering Society
, Dublin, Ireland (March 20–23,
2019
), paper 10173.
60.
B.
Story
, “
Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002
,”
J. Acoust. Soc. Am.
123
(
1
),
327
335
(
2008
).
61.
N. R.
Shabtai
,
G.
Behler
,
M.
Vorländer
, and
S.
Weinzierl
, “
Generation and analysis of an acoustic radiation pattern database for forty-one musical instruments
,”
J. Acoust. Soc. Am.
141
(
2
),
1246
1256
(
2017
).
62.
S.
Weinzierl
,
M.
Vorländer
,
G.
Behler
,
F.
Brinkmann
,
H.
von Coler
,
E.
Detzner
,
J.
Krämer
,
A.
Lindau
,
M.
Pollow
,
F.
Schulz
, and
N. R.
Shabtai
, “
A database of anechoic microphone array measurements of musical instruments
,” Technische Universität Berlin (
2017
), (Last viewed July 24, 2020).
63.
S. D.
Bellows
,
C. M.
Pincock
,
J. K.
Whiting
, and
T. W.
Leishman
, “
Average Speech Directivity
,” Brigham Young University ScholarsArchive (
2019
). Directivity. 1. https://scholarsarchive.byu.edu/directivity/1 (Last viewed January 21, 2021).
64.
P. M.
Morse
and
K. U.
Ingard
,
Theoretical Acoustics
(
McGraw-Hill
,
New York
,
1968
), pp.
340
341
.
65.
S.
Bellows
and
T.
Leishman
, “
Single-channel sound power estimation for reverberation effects
,”
Proceedings of the 149th Convention of the Audio Engineering Society
, Online (October 27–30,
2020
), paper 10413.
66.
M. D.
Burkhard
and
R. M.
Sachs
, “
Anthropometric manikin for acoustic research
,”
J. Acoust. Soc. Am
58
(
1
),
214
222
(
1975
).
You do not currently have access to this content.