Frequency-differencing, or autoproduct processing, techniques are one area of research that has been found to increase the robustness of acoustic array signal processing algorithms to environmental uncertainty. Previous studies have shown that frequency differencing techniques are able to mitigate problems associated with environmental mismatch in source localization techniques. While this method has demonstrated increased robustness compared to conventional methods, many of the metrics, such as ambiguity surface peak values and dynamic range, are lower than would typically be expected for the observed level of robustness. These previous studies have suggested that such metrics are reduced by the inherent nonlinearity of the frequency-differencing method. In this study, simulations of simple multi-path environments are used to analyze this nonlinearity and signal processing techniques are proposed to mitigate the effects of this problem. These methods are used to improve source localization metrics, particularly ambiguity surface peak value and dynamic range, in two experimental environments: a small laboratory water tank and in a deep ocean (Philippine Sea) environment. The performance of these techniques demonstrates that many source localization metrics can be improved for frequency-differencing methods, which suggests that frequency-differencing methods may be as robust as previous studies have shown.

1.
Abadi
,
S. H.
,
Song
,
H. C.
, and
Dowling
,
D. R.
(
2012
). “
Broadband sparse-array blind deconvolution using frequency-difference beamforming
,”
J. Acoust. Soc. Am.
132
,
3018
3029
.
2.
Aravkin
,
A.
,
Becker
,
S.
,
Cevher
,
V.
, and
Olsen
,
P.
(
2014
). “
A variational approach to stable principal component pursuit
,”
2014 UAI Proceedings
.
3.
Baggereor
,
A. B.
,
Kuperman
,
W. A.
, and
Mikhalevsky
,
P. N.
(
1993
). “
An overview of matched field methods in ocean acoustics
,”
IEEE J. Ocean Eng.
18
,
401
424
.
4.
Blake
,
W. K.
, and
Chase
,
D. M.
(
1971
). “
Wavenumber-frequency spectra of turbulent-boundary-layer pressure mounted by microphone arrays
,”
J. Acoust. Soc. Am.
49
,
862
877
.
5.
Birdsall
,
T. G.
, and
Metzger
,
K.
(
1986
). “
Factor inverse matched filtering
,”
J. Acoust. Soc. Am.
79
(
1
),
91
99
.
6.
Bucker
,
H. P.
(
1976
). “
Use of calculated sound fields and matched-field detection to locate sound sources in shallow water
,”
J. Acoust. Soc. Am.
59
,
368
373
.
7.
Chandrayadula
,
T. K.
,
Periyasamy
,
S.
,
Colosi
,
J. A.
,
Worcester
,
P. F.
,
Dzieciuch
,
M. A.
,
Mercer
,
J. A.
, and
Andrew
,
R. K.
(
2020
). “
Observations of low-frequency, long-range acoustic propagation in the Philippine Sea and comparisons with mode transport theory
,”
J. Acoust. Soc. Am.
147
(
2
),
877
897
.
8.
Clarebout
,
J. F.
(
1968
). “
Synthesis of a layered medium from its acoustic transmission response
,”
Geophysics
33
,
229
392
.
9.
Colosi
,
J. A.
,
Cornuelle
,
B. D.
,
Dzieciuch
,
M. A.
,
Worcester
,
P. F.
, and
Chandrayadula
,
T. K.
(
2019
). “
Observations of phase and intensity fluctuations for low-frequency, long-range transmissions in the Philippine Sea and comparisons to path-integral theory
,”
J. Acoust. Soc. Am.
146
(
1
),
567
585
.
10.
Dinsenmeyer
,
A.
,
Antoni
,
J.
,
Leclere
,
Q.
, and
Pereira
,
A.
(
2018
). “
On the denoising of cross-spectral matrices for (aero)acoustic applications
,”
Proceedings of the Berlin Beamforming Conference
.
11.
Douglass
,
A. S.
,
Song
,
H. C.
, and
Dowling
,
D. R.
(
2017
). “
Performance comparisons of frequency-difference and conventional beamforming
,”
J. Acoust. Soc. Am.
142
(
3
),
1663
1673
.
12.
Finette
,
S.
, and
Mignerey
,
P. C.
(
2018
). “
Stochastic matched-field localization of an acoustic source based on principles of Riemannian geometry
,”
J. Acoust. Soc. Am.
143
(
6
),
3628
3638
.
13.
Geroski
,
D. J.
, and
Dowling
,
D. R.
(
2019
). “
Long range frequency-difference source localization in the Philippine Sea
,”
J. Acoust. Soc. Am.
146
,
4727
4739
.
14.
Hald
,
J.
(
2017
). “
Removal of incoherent noise from an averaged cross-spectral matrix
,”
J. Acoust. Soc. Am.
142
(
2
),
846
854
.
15.
Hald
,
J.
(
2019
). “
Denoising of cross-spectral matrices using canonical coherence
,”
J. Acoust. Soc Am.
146
,
399
408
.
16.
Jensen
,
F. B.
,
Kuperman
,
W. A.
,
Porter
,
M. B.
, and
Schmidt
,
H.
(
2011
).
Computational Ocean Acoustics
, 2nd ed. (
AIP
,
Melville, NY
), pp.
705
722
.
17.
Kovesi
,
P.
(
2015
). “
Good colour maps: How to design them
,” arXiv:1509.03700v1.
18.
Li
,
J.
,
Gerstoft
,
P.
,
Gao
,
D.
,
Li
,
G.
, and
Wang
,
N.
(
2017
). “
Localizing scatterers from surf noise cross correlations
,”
J. Acoust. Soc. Am.
141
(
1
),
EL64
EL69
.
19.
Lipa
,
J. E.
,
Worthmann
,
B. M.
, and
Dowling
,
D. R.
(
2018
). “
Measurement of autoproduct fields in a Lloyd's mirror environment
,”
J. Acoust. Soc. Am.
143
,
2419
2427
.
20.
Michalevsky
,
P. N.
,
Sperry
,
B. J.
,
Woolfe
,
K. F.
,
Dzieciuch
,
M. A.
, and
Worcester
,
P. F.
(
2020
). “
Deep ocean long range underwater navigation
,”
J. Acoust. Soc. Am.
147
(
4
),
2365
2382
.
21.
Ozanich
,
E.
,
Gerstoft
,
P.
,
Worcester
,
P. F.
,
Dzieciuch
,
M. A.
, and
Thode
,
A.
(
2017
). “
Eastern Arctic ambient noise on a drifting vertical array
,”
J. Acoust. Soc. Am.
142
(
4
),
1997
2006
.
22.
Pierce
,
A. D.
(
1994
).
Acoustics: An Introduction to Its Physical Principles and Applications.
3rd ed. (
Springer
,
New York City, NY
), pp.
241
289
.
23.
Porter
,
M.
(
1992
). “
The KRAKEN normal mode program
,” Defense Technical Information Center (DTIC).
24.
Porter
,
M. B.
, and
Reiss
,
E. L.
(
1985
). “
A numerical method for bottom interacting ocean acoustic normal modes
,”
J. Acoust. Soc. Am.
77
,
1760
1767
.
25.
Snieder
,
R.
,
van Wijk
,
K.
, and
Haney
,
M.
(
2008
). “
The cancellation of spurious arrivals in Green's function extraction and the generalized optical theorem
,”
Phys. Rev. E
78
,
036606
.
26.
Tatarskii
,
V. I.
, and
Clifford
,
S. F.
(
1995
). “
On the theory of Δk radar observations of ocean surface waves
,”
IEEE Trans. Ant. Propag.
43
(
8
),
843
850
.
27.
Usher
,
T.
(
1964
). “
Signal detection by arrays in noise fields with local variations
,”
J. Acoust. Soc. Am.
36
(
8
),
1444
1449
.
28.
Wegert
,
E.
(
2012
). in
Visual Complex Functions: An Introduction with Phase Portraits
(
Birkhauser
,
Basel
),
Chap. 2
.
29.
Worcester
,
P. F.
,
Dzieciuch
,
M. A.
,
Mercer
,
J. A.
,
Andrew
,
R. K.
,
Dushaw
,
B. D.
,
Baggeroer
,
A. B.
,
Heaney
,
K. D.
,
D'Spain
,
G. L.
,
Colosi
,
J. A.
,
Stephen
,
R. A.
,
Kemp
,
J. N.
,
Howe
,
B. M.
,
Van Uffelen
,
L. J.
, and
Wage
,
K. E.
(
2013
). “
The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea
,”
J. Acoust. Soc. Am.
134
(
4
),
3359
3375
.
30.
Worthmann
,
B. M.
,
Song
,
H. C.
, and
Dowling
,
D. R.
(
2015
). “
High frequency source localization in a shallow ocean using frequency-difference matched field processing
,”
J. Acoust. Soc. Am.
138
,
3549
3562
.
31.
Worthmann
,
B. M.
, and
Dowling
,
D. R.
(
2017
). “
The frequency-difference and frequency-sum acoustic-field autoproducts
,”
J. Acoust. Soc. Am.
141
,
4579
4590
.
32.
Wright
,
J.
,
Ganesh
,
A.
,
Rao
,
S.
,
Peng
,
Y.
, and
Ma
,
Y.
(
2009
). “
Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization
,”
NIPS'09: Proceedings of the 22nd International Conference on Neural Information Processing Systems
, pp.
2080
2088
.
33.
Wu
,
M.
,
Barmin
,
M. P.
,
Andrew
,
R. K.
,
Weichman
,
P. B.
,
White
,
A. W.
,
Lavely
,
E. M.
,
Dzieciuch
,
M. A.
,
Mercer
,
J. A.
,
Worcester
,
P. F.
, and
Ritzwoller
,
M. H.
(
2019
). “
Deep water acoustic range estimation based on an ocean general circulation model: Application to PhilSea10 data
,”
J. Acoust. Soc. Am.
146
(
6
),
4754
4773
.
You do not currently have access to this content.