Unmanned aerial vehicle (UAV) technologies are rapidly advancing due to the unlimited number of applications from parcel delivery to people transportation. As the UAV market expands, community noise impact will become a significant problem for public acceptance. Compact drone architectures based on contra-rotating propellers bring significant benefits in terms of aerodynamic performance and redundancy to ensure vehicle control in case of component failure. However, contra-rotating propellers are severely noisy if not designed appropriately. In the framework of a perception-influenced design approach, this paper investigates the optimal rotor spacing distance configuration to minimise noise annoyance. On the basis of a series of psychoacoustic metrics (i.e., loudness, fluctuation strength, roughness, sharpness, and tonality) and psychoacoustic annoyance (PA) models, the optimal rotor axial separation distance (expressed as a function of propeller blade diameter) is at a range from 0.2 to 0.4. This paper also discusses the performance of currently available psychoacoustic models to predict propeller noise annoyance and defines further work to develop a PA model optimised for rotating systems.

1.
ATI
(
2019
). “
Accelerating ambition: Technology strategy 2019
,” https://www.ati.org.uk/media/siybi1mm/reduced-ati-tech-strategy.pdf (Last viewed July 4, 2020).
2.
Alexander
,
W. N.
,
Whelchel
,
J.
,
Intaratep
,
N.
, and
Trani
,
A.
(
2019
). “
Predicting community noise of sUAS
,” in
Proceedings of 25th AIAA/CEAS Aeroacoustics Conference
,
May 20–23
,
Delft, The Netherlands
.
3.
Angerer
,
R.
,
Erickson
,
R. A.
, and
McCurdy
,
D. A.
(
1991
). “
Development of an annoyance model based upon elementary auditory sensations for steady-state aircraft interior noise containing tonal components
,” NASA Technical Report No. TM 104147,
NASA
,
Washington, DC
.
4.
Anghinolfi
,
D.
,
Canepa
,
E.
,
Cattanei
,
A.
, and
Paoluci
,
M.
(
2016
). “
Psychoacoustic optimization of the spacing of propellers, helicopter rotors, and axial fans
,”
J. Propul. Power
32
(
6
),
1422
1432
.
5.
Aures
,
W.
(
1985a
). “
Ein berechnungsverfahren der rauhigkeit” (“A calculation method for roughness”)
,
Acta Acust. Acust.
58
(
5
),
268
281
, available at https://www.ingentaconnect.com/content/dav/aaua/1985/00000058/00000005/art00005.
6.
Aures
,
W.
(
1985b
). “
Berechnungsverfahren für den sensorischen wohlklang beliebiger schallsignale” (“A procedure for calculating sensory pleasantness of various sounds”)
,
Acta Acust. Acust.
59
(
2
),
130
141
.
7.
Barbot
,
B.
,
Lavandier
,
C.
, and
Cheminée
,
P.
(
2008
). “
Perceptual representation of aircraft sounds
,”
Appl. Acoust.
69
,
1003
1016
.
8.
Berckmans
,
D.
,
Janssens
,
K.
,
Van der Auweraer
,
H.
,
Sas
,
P.
, and
Desmet
,
W.
(
2008
). “
Model-based synthesis of aircraft noise to quantify human perception of sound quality and annoyance
,”
J. Sound Vib.
311
,
1175
1195
.
9.
Boucher
,
M.
,
Krishnamurthy
,
S.
,
Christian
,
A.
, and
Rizzi
,
S. A.
(
2019
). “
Sound quality metric indicators of rotorcraft noise annoyance using multilevel regression analysis
,”
Proc. Mtgs. Acoust.
36
,
040004
.
10.
Brackley
,
M.
, and
Pollock
,
C.
(
2000
). “
Analysis and reduction of acoustic noise from a brushless DC drive
,”
IEEE Trans. Industry Appl.
36
(
3
),
772
777
.
11.
Brazinskas
,
M.
,
Prior
,
S. D.
, and
Scanlan
,
J. P.
(
2016
). “
An empirical study of overlapping rotor interference for a small unmanned aircraft propulsion system
,”
Aerospace
3
(
4
),
32
.
12.
Cabell
,
R.
,
Grosveld
,
F.
, and
McSwain
,
R.
(
2016
). “
Measured noise from small unmanned aerial vehicles
,” in
Proceedings of NOISE-CON 2016
,
June 13–15
,
Providence, RI
.
13.
Chaitanya
,
P.
,
Joseph
,
P.
,
Prior
,
S. D.
, and
Parry
,
A. B.
(
2020
). “
On the optimum separation distance for minimum noise of contra-rotating propellers
,” available at https://eprints.soton.ac.uk/444759/.
14.
Christian
,
A. W.
, and
Cabell
,
R.
(
2017
). “
Initial investigation into the psychoacoustic properties of small unmanned aerial system noise
,” in
Proceedings of the 23rd AIAA/CEAS Aeroacoustics Conference
,
June 5–9
,
Denver, CO
.
15.
Daniel
,
P.
(
2008
). “
Psychoacoustical roughness
,” in
Handbook of Signal Processing in Acoustics
, edited by
D.
Havelock
,
S.
Kuwano
, and
E.
Vorlander
(
Springer
,
New York
), pp.
263
275
.
16.
Di
,
G.-Q.
,
Chen
,
X.-W.
,
Song
,
K.
,
Zhou
,
B.
, and
Pei
,
C.-M.
(
2016
). “
Improvement of Zwicker's psychoacoustic annoyance model aiming at tonal noises
,”
Appl. Acoust.
105
,
164
170
.
17.
DIN
(
2009
).
DIN 45692-2009, Measurement Technique for the Simulation of the Auditory Sensation of Sharpness
(
Deutsches Institut Für Normung
,
Berlin, Germany
).
18.
DIN
(
2010
).
DIN 45631/A1-2010, Calculation of Loudness Level and Loudness From the Sound Spectrum—Zwicker Method—Amendment 1: Calculation of the Loudness of Time-Variant Sound
(
Deutsches Institut Für Normung
,
Berlin, Germany
).
19.
Ercan
,
A. M.
(
2019
). “
Sound quality of small electric motors
,” in
Proceedings of InterNoise 2019
,
June 16–19
,
Madrid, Spain
.
20.
Gwak
,
D. Y.
,
Han
,
D.
, and
Lee
,
S.
(
2020
). “
Sound quality factors influencing annoyance from hovering UAV
,”
J. Sound Vib.
489
,
115651
.
21.
HEAD Acoustics
(
2018
). “
Loudness and sharpness calculation
,” Technical Report Application Note 02/18,
HEAD Acoustics
,
Brighton, MI
.
22.
Heff
,
G. E.
(
1990
). “
Experimental performance and acoustic investigation of modern, counterrotating blade concepts
,” NASA Contractor Report 185158
,
NASA
,
Washington, DC
.
23.
Krishnamurthy
,
S.
,
Christian
,
A.
, and
Rizzi
,
S.
(
2018
). “
Psychoacoustic test to determine sound quality metric indicators of rotorcraft noise annoyance
,” in
Proceedings of Inter-Noise 2018 Impact of Noise Control Engineering
, Chicago, IL.
24.
Krishnamurthy
,
S.
,
Rizzi
,
S. A.
,
Boyd
,
D. D.
, Jr.
, and
Aumann
,
A. R.
(
2018
). “
Auralization of rotorcraft periodic flyover noise from design predictions
,” in
Proceedings of the AHS International 74th Annual Forum & Technology Display
,
May 14–17
,
Phoenix, AZ
.
25.
Lee
,
J.
(
2016
). “
The effects of tones in noise on human annoyance and performance
,” Ph.D. thesis,
University of Nebraska
,
Lincoln, NE
.
26.
Lee
,
J.
, and
Wang
,
L. M.
(
2020
). “
Investigating multidimensional characteristics of noise signals with tones from building mechanical systems and their effects on annoyance
,”
J. Acoust. Soc. Am.
147
,
108
124
.
27.
Lee
,
K. H.
,
Davies
,
P.
, and
Surprenant
,
A. M.
(
2005
). “
Tonal strength of harmonic complex tones in machinery noise
,”
J. Acoust. Soc. Am.
118
,
1921
.
28.
Lyon
,
R. H.
(
2003
). “
Product sound quality—From perception to design
,”
Sound Vib.
37
(
3
),
18
23
.
29.
McMullen
,
A. L.
(
2014
). “
Assessment of noise metrics for application to rotorcraft
,” Master's thesis,
Purdue University
,
West Lafayette, IN
.
30.
Magliozzi
,
B.
,
Hanson
,
D. B.
, and
Amiet
,
R. K.
(
1991
). “
Propeller and propfan noise
,” in
Aeroacoustics of Flight Vehicles: Theory and Practice
,
Vol. 1
, edited by
H. H.
Hubbard
(
NASA
,
Washington, DC
), pp.
1
64
.
31.
Marte
,
J. E.
, and
Kurtz
,
D. W.
(
1970
). “
A review of aerodynamic noise from propellers, rotors, and lift fans
,” NASA Technical Report NASA-32-7462
,
NASA
,
Washington, DC
.
32.
McKay
,
R. S.
,
Kingan
,
M. J.
, and
Go
,
R.
(
2019
). “
Experimental investigation of contra-rotating multi-rotor UAV propeller noise
,” in
Proceedings of ACOUSTICS 2019
,
May 13–14
,
Cape Schanck, Victoria, Australia
.
33.
Mestre
,
V.
,
Fidell
,
S.
,
Horonjeff
,
R. D.
,
Schomer
,
P.
,
Hastings
,
A.
,
Tabachnick
,
B. G.
, and
Schmitz
,
F. A.
(
2017
).
Assessing Community Annoyance of Helicopter Noise
(
The National Academies Press
,
Washington, DC
).
34.
More
,
S.
, and
Davies
,
P.
(
2010
). “
Human responses to the tonalness of aircraft noise
,”
Noise Control Eng. J.
58
(
4
),
420
440
.
35.
More
,
S.
(
2011
). “
Aircraft noise metrics and characteristics
,” Ph.D. thesis,
Purdue University
,
West Lafayette, IN
.
36.
Mosquera-Sánchez
,
J. A.
,
Villalba
,
J.
,
Janssens
,
K.
, and
de Oliveira
,
L. P. R.
(
2014
). “
A multi objective sound quality optimization of electric motor noise in hybrid vehicles
,” in
Proceedings of International Conference on Noise and Vibration Engineering (ISMA 2014)
, September 15–17,
Leuven, Belgium
.
37.
Perakis
,
G. J.
,
Flindell
,
I. H.
, and
Self
,
R. H.
(
2013
). “
Toward Roughness as an additional metric for aircraft noise containing multiple tones
,”
Acta Acust. Acust.
99
,
828
835
.
38.
Rizzi
,
S. A.
(
2016
). “
Toward reduced aircraft community noise impact via a perception-influenced design approach
,” in
Proceedings of InterNoise 2016
,
August 21–24
,
Hamburg, Germany
.
39.
Rizzi
,
S. A.
,
Burley
,
C. L.
, and
Thomas
,
R. H.
(
2016
). “
Auralization of NASA N+2 aircraft concepts from system noise predictions
,” in
Proceedings of the 22nd AIAA/CEAS Aeroacoustics Conference
,
May 30–June 1
,
Lyon, France
.
40.
Sottek
,
R.
(
1993
). “
Modelle zur signalverarbeitung im menschlichen gehör” (“Models for signal processing in human hearing”)
, Ph.D. thesis,
RWTH Aachen
,
Aachen, Germany
.
41.
Sottek
,
R.
, and
Genuit
,
K.
(
2005
). “
Models of signal processing in human hearing
,”
Int. J. Electron. Commun.
59
,
157
165
.
42.
Sottek
,
R.
,
Vranken
,
P.
, and
Busch
,
G.
(
1995
). “
Ein Modell zrur Berechnung der Impulshaltigkeit” (“A model for calculating impulsiveness”)
, in
Proceedings of DAGA 95 (German Acoustical Society Meeting)
,
March 13–17
,
Saarbrücken, Germany
.
43.
Stract
,
W. C.
,
Knip
,
G.
,
Weisbrich
,
A. L.
,
Godston
,
J.
, and
Bradley
,
E.
(
1981
). “
Technology and benefits of aircraft counter rotation propellers
,” NASA Technical Memorandum 82983, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19830002859.pdf (Last viewed July 4, 2020).
45.
Terhardt
,
E.
,
Stoll
,
G.
, and
Seewann
,
M.
(
1982a
). “
Algorithm for extraction of pitch and pitch salience from complex tonal signals
,”
J. Acoust. Soc. Am.
71
,
679
688
.
46.
Terhardt
,
E.
,
Stoll
,
G.
, and
Seewann
,
M.
(
1982b
). “
Pitch of complex signals according to virtual-pitch theory: Tests, examples, and predictions
,”
J. Acoust. Soc. Am.
71
,
671
678
.
47.
Tinney
,
C. E.
, and
Sirohi
,
J.
(
2018
). “
Multirotor drone noise at static thrust
,”
AIAA J.
56
(
7
),
2816
2826
.
48.
Torija
,
A. J.
,
Roberts
,
S.
,
Woodward
,
R.
,
Flindell
,
I. H.
,
McKenzie
,
A. R.
, and
Self
,
R. H.
(
2019
). “
On the assessment of subjective response to tonal content of contemporary aircraft noise
,”
Appl. Acoust.
146
,
190
203
.
49.
Torija
,
A. J.
,
Self
,
R. H.
, and
Lawrence
,
J. L. T.
(
2019
). “
Psychoacoustic characterisation of a small fixed-pitch quadcopter
,”
in Proceedings of InterNoise 2019
,
June 16–19
,
Madrid, Spain
.
50.
White
,
K.
,
Bronkhorst
,
A. W.
, and
Meeter
,
M.
(
2017
). “
Annoyance by transportation noise: The effects of source identity and tonal components
,”
J. Acoust. Soc. Am.
141
,
3137
3144
.
51.
Zwicker
,
E.
, and
Fastl
,
H.
(
1999
).
Psychoacoustics—Facts and Models
(
Springer-Verlag
,
Berlin
).
You do not currently have access to this content.