Shock wave lithotripsy (SWL) has been widely used for non-invasive treatment of kidney stones. Cavitation plays an important role in stone fragmentation, yet it may also contribute to renal injury during SWL. It is therefore crucial to determine the spatiotemporal distributions of cavitation activities to maximize stone fragmentation while minimizing tissue injury. Traditional cavitation detection methods include high-speed optical imaging, active cavitation mapping (ACM), and passive cavitation mapping (PCM). While each of the three methods provides unique information about the dynamics of the bubbles, PCM has most practical applications in biological tissues. To image the dynamics of cavitation bubble collapse, we previously developed a sliding-window PCM (SW-PCM) method to identify each bubble collapse with high temporal and spatial resolution. In this work, to further validate and optimize the SW-PCM method, we have developed tri-modality cavitation imaging that includes three-dimensional high-speed optical imaging, ACM, and PCM seamlessly integrated in a single system. Using the tri-modality system, we imaged and analyzed laser-induced single cavitation bubbles in both free field and constricted space and shock wave-induced cavitation clusters. Collectively, our results have demonstrated the high reliability and spatial-temporal accuracy of the SW-PCM approach, which paves the way for the future in vivo applications on large animals and humans in SWL.

1.
Acconcia
,
C. N.
,
Jones
,
R. M.
,
Goertz
,
D. E.
,
O'Reilly
,
M. A.
, and
Hynynen
,
K.
(
2017
). “
Megahertz rate, volumetric imaging of bubble clouds in sonothrombolysis using a sparse hemispherical receiver array
,”
Phys. Med. Biol.
62
,
L31
L40
.
2.
Assimos
,
D.
,
Krambeck
,
A.
,
Miller
,
N. L.
,
Monga
,
M.
,
Murad
,
M. H.
,
Nelson
,
C. P.
,
Pace
,
K. T.
,
Pais
,
V. M.
, Jr.
,
Pearle
,
M. S.
,
Preminger
,
G. M.
,
Razvi
,
H.
,
Shah
,
O.
, and
Matlaga
,
B. R.
(
2016a
). “
Surgical management of stones: American urological association/endourological society guideline, Part I
,”
J. Urol.
196
,
1153
1160
.
3.
Assimos
,
D.
,
Krambeck
,
A.
,
Miller
,
N. L.
,
Monga
,
M.
,
Murad
,
M. H.
,
Nelson
,
C. P.
,
Pace
,
K. T.
,
Pais
,
V. M.
, Jr.
,
Pearle
,
M. S.
,
Preminger
,
G. M.
,
Razvi
,
H.
,
Shah
,
O.
, and
Matlaga
,
B. R.
(
2016b
). “
Surgical management of stones: American urological association/endourological society guideline, Part II
,”
J. Urol.
196
,
1161
1169
.
4.
Bader
,
K. B.
,
Vlaisavljevich
,
E.
, and
Maxwell
,
A. D.
(
2019
). “
For whom the bubble grows: Physical principles of bubble nucleation and dynamics in histotripsy ultrasound therapy
,”
Ultrasound Med. Biol.
45
,
1056
1080
.
5.
Chen
,
H.
,
Kreider
,
W.
,
Brayman
,
A. A.
,
Bailey
,
M. R.
, and
Matula
,
T. J.
(
2011
). “
Blood vessel deformations on microsecond time scales by ultrasonic cavitation
,”
Phys. Rev. Lett.
106
,
034301
.
6.
Cheng
,
M.
,
Hua
,
J.
, and
Lou
,
J.
(
2010
). “
Simulation of bubble–bubble interaction using a lattice Boltzmann method
,”
Comput. Fluids
39
,
260
270
.
7.
Church
,
C. C.
(
1989
). “
A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter
,”
J. Acoust. Soc. Am.
86
,
215
227
.
8.
Cleveland
,
R. O.
, and
Sapozhnikov
,
O. A.
(
2005
). “
Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy
,”
J. Acoust. Soc. Am.
118
,
2667
2676
.
9.
Cleveland
,
R. O.
,
Sapozhnikov
,
O. A.
,
Bailey
,
M. R.
, and
Crum
,
L. A.
(
2000
). “
A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro
,”
J. Acoust. Soc. Am.
107
,
1745
1758
.
10.
Coleman
,
A. J.
,
Saunders
,
J. E.
,
Crum
,
L. A.
, and
Dyson
,
M.
(
1987
). “
Acoustic cavitation generated by an extracorporeal shockwave lithotripter
,”
Ultrasound Med. Biol.
13
,
69
76
.
11.
Dean-Ben
,
X. L.
,
Fehm
,
T. F.
,
Ford
,
S. J.
,
Gottschalk
,
S.
, and
Razansky
,
D.
(
2017
). “
Spiral volumetric optoacoustic tomography visualizes multi-scale dynamics in mice
,”
Light Sci. Appl.
6
,
e16247
.
12.
Desailly
,
Y.
,
Tissier
,
A. M.
,
Correas
,
J. M.
,
Wintzenrieth
,
F.
,
Tanter
,
M.
, and
Couture
,
O.
(
2017
). “
Contrast enhanced ultrasound by real-time spatiotemporal filtering of ultrafast images
,”
Phys. Med. Biol.
62
,
31
42
.
13.
Eisenmenger
,
W.
(
2001
). “
The mechanisms of stone fragmentation in ESWL
,”
Ultrasound Med. Biol.
27
,
683
693
.
14.
Gao
,
F.
,
Hu
,
Y.
, and
Hu
,
H.
(
2007
). “
Asymmetrical oscillation of a bubble confined inside a micro pseudoelastic blood vessel and the corresponding vessel wall stresses
,”
Int. J. Solids Struct.
44
,
7197
7212
.
15.
Gateau
,
J.
,
Aubry
,
J. F.
,
Pernot
,
M.
,
Fink
,
M.
, and
Tanter
,
M.
(
2011
). “
Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high-intensity ultrasound
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
,
517
532
.
16.
Gyongy
,
M.
, and
Coussios
,
C. C.
(
2010a
). “
Passive cavitation mapping for localization and tracking of bubble dynamics
,”
J. Acoust. Soc. Am.
128
,
EL175
180
.
17.
Gyongy
,
M.
, and
Coussios
,
C. C.
(
2010b
). “
Passive spatial mapping of inertial cavitation during HIFU exposure
,”
IEEE Trans. Biomed. Eng.
57
,
48
56
.
18.
Gyongy
,
M.
, and
Coviello
,
C. M.
(
2011
). “
Passive cavitation mapping with temporal sparsity constraint
,”
J. Acoust. Soc. Am.
130
,
3489
3497
.
19.
Haworth
,
K. J.
,
Bader
,
K. B.
,
Rich
,
K. T.
,
Holland
,
C. K.
, and
Mast
,
T. D.
(
2017
). “
Quantitative frequency-domain passive cavitation imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
64
,
177
191
.
20.
Hyams
,
E. S.
, and
Matlaga
,
B. R.
(
2014
). “
Economic impact of urinary stones
,”
Transl. Androl. Urol.
3
,
278
283
.
21.
Jensen
,
J. A.
(
1991
). “
A model for the propagation and scattering of ultrasound in tissue
,”
J. Acoust. Soc. Am.
89
,
182
190
.
22.
Kruger
,
R. A.
,
Kuzmiak
,
C. M.
,
Lam
,
R. B.
,
Reinecke
,
D. R.
,
Del Rio
,
S. P.
, and
Steed
,
D.
(
2013
). “
Dedicated 3D photoacoustic breast imaging
,”
Med. Phys.
40
,
113301
.
23.
Leighton
,
T. G.
,
Fedele
,
F.
,
Coleman
,
A. J.
,
McCarthy
,
C.
,
Ryves
,
S.
,
Hurrell
,
A. M.
,
De Stefano
,
A.
, and
White
,
P. R.
(
2008
). “
A passive acoustic device for real-time monitoring of the efficacy of shockwave lithotripsy treatment
,”
Ultrasound Med. Biol.
34
,
1651
1665
.
24.
Li
,
M.
,
Lan
,
B.
,
Sankin
,
G.
,
Zhou
,
Y.
,
Liu
,
W.
,
Xia
,
J.
,
Wang
,
D.
,
Trahey
,
G.
,
Zhong
,
P.
, and
Yao
,
J.
(
2020a
). “
Simultaneous photoacoustic imaging and cavitation mapping in shockwave lithotripsy
,”
IEEE Trans. Med. Imag.
39
,
468
477
.
25.
Li
,
M.
,
Liu
,
C.
,
Gong
,
X.
,
Zheng
,
R.
,
Bai
,
Y.
,
Xing
,
M.
,
Du
,
X.
,
Liu
,
X.
,
Zeng
,
J.
,
Lin
,
R.
,
Zhou
,
H.
,
Wang
,
S.
,
Lu
,
G.
,
Zhu
,
W.
,
Fang
,
C.
, and
Song
,
L.
(
2018
). “
Linear array-based real-time photoacoustic imaging system with a compact coaxial excitation handheld probe for noninvasive sentinel lymph node mapping
,”
Biomed. Opt. Exp.
9
,
1408
1422
.
26.
Li
,
M.
,
Vu
,
T.
,
Sankii
,
G.
,
Winship
,
B.
,
Boydston
,
K.
,
Terry
,
R.
,
Zhong
,
P.
, and
Yao
,
J.
(
2020b
). “
Internal-illumination photoacoustic tomography enhanced by a graded-scattering fiber diffuser
,”
IEEE Trans. Med. Imag.
40
,
346
356
.
27.
Li
,
T.
,
Khokhlova
,
T. D.
,
Sapozhnikov
,
O. A.
,
O'Donnell
,
M.
, and
Hwang
,
J. H.
(
2014
). “
A new active cavitation mapping technique for pulsed HIFU applications—Bubble Doppler
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
61
,
1698
1708
.
28.
Lingeman
,
J. E.
,
Kim
,
S. C.
,
Kuo
,
R. L.
,
McAteer
,
J. A.
, and
Evan
,
A. P.
(
2003
). “
Shockwave lithotripsy: Anecdotes and insights
,”
J. Endourol.
17
,
687
693
.
29.
Lotan
,
Y.
,
Cadeddu
,
J. A.
,
Roehrborn
,
C. G.
, and
Stage
,
K. H.
(
2004
). “
The value of your time: Evaluation of effects of changes in Medicare reimbursement rates on the practice of urology
,”
J. Urol.
172
,
1958
1962
.
30.
Madanshetty
,
S. I.
,
Roy
,
R. A.
, and
Apfel
,
R. E.
(
1991
). “
Acoustic microcavitation: Its active and passive acoustic detection
,”
J. Acoust. Soc. Am.
90
,
1515
1526
.
31.
Matlaga
,
B. R.
,
McAteer
,
J. A.
,
Connors
,
B. A.
,
Handa
,
R. K.
,
Evan
,
A. P.
,
Williams
,
J. C.
,
Lingeman
,
J. E.
, and
Willis
,
L. R.
(
2008
). “
Potential for cavitation-mediated tissue damage in shockwave lithotripsy
,”
J. Endourol.
22
,
121
126
.
32.
Mortality
,
G. B. D.
, and
Causes of Death
,
C.
(
2015
). “
Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013
,”
Lancet
385
,
117
171
.
33.
Norton
,
S. J.
, and
Won
,
I. J.
(
2000
). “
Time exposure acoustics
,”
IEEE Trans. Geosci. Remote Sens.
38
,
1337
1343
.
34.
Paltauf
,
G.
,
Hartmair
,
P.
,
Kovachev
,
G.
, and
Nuster
,
R.
(
2017
). “
Piezoelectric line detector array for photoacoustic tomography
,”
Photoacoustics
8
,
28
36
.
35.
Pearle
,
M. S.
,
Calhoun
,
E. A.
,
Curhan
,
G. C.
, and
Urologic Diseases of America Project
(
2005a
). “
Urologic diseases in America project: Urolithiasis
,”
J. Urol.
173
,
848
857
.
36.
Pearle
,
M. S.
,
Lingeman
,
J. E.
,
Leveillee
,
R.
,
Kuo
,
R.
,
Preminger
,
G. M.
,
Nadler
,
R. B.
,
Macaluso
,
J.
,
Monga
,
M.
,
Kumar
,
U.
,
Dushinski
,
J.
,
Albala
,
D. M.
,
Wolf
,
J. S.
, Jr.
,
Assimos
,
D.
,
Fabrizio
,
M.
,
Munch
,
L. C.
,
Nakada
,
S. Y.
,
Auge
,
B.
,
Honey
,
J.
,
Ogan
,
K.
,
Pattaras
,
J.
,
McDougall
,
E. M.
,
Averch
,
T. D.
,
Turk
,
T.
,
Pietrow
,
P.
, and
Watkins
,
S.
(
2005b
). “
Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less
,”
J. Urol.
173
,
2005
2009
.
37.
Philipp
,
A.
,
Delius
,
M.
,
Scheffczyk
,
C.
,
Vogel
,
A.
, and
Lauterborn
,
W.
(
1993
). “
Interaction of lithotripter-generated shock-waves with air bubbles
,”
J. Acoust. Soc. Am.
93
,
2496
2509
.
38.
Pishchalnikov
,
Y. A.
,
Sapozhnikov
,
O. A.
,
Bailey
,
M. R.
,
Williams
,
J. C.
, Jr.
,
Cleveland
,
R. O.
,
Colonius
,
T.
,
Crum
,
L. A.
,
Evan
,
A. P.
, and
McAteer
,
J. A.
(
2003
). “
Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves
,”
J. Endourol.
17
,
435
446
.
39.
Pishchalnikov
,
Y. A.
,
Williams
,
J. C.
, and
McAteer
,
J. A.
(
2011
). “
Bubble proliferation in the cavitation field of a shock wave lithotripter
,”
J. Acoust. Soc. Am.
130
,
EL87
EL93
.
40.
Preminger
,
G. M.
,
Tiselius
,
H. G.
,
Assimos
,
D. G.
,
Alken
,
P.
,
Buck
,
A. C.
,
Gallucci
,
M.
,
Knoll
,
T.
,
Lingeman
,
J. E.
,
Nakada
,
S. Y.
,
Pearle
,
M. S.
,
Sarica
,
K.
,
Turk
,
C.
, and
Wolf
,
J. S.
, Jr.
(
2007
). “
2007 Guideline for the management of ureteral calculi
,”
Eur. Urol.
52
,
1610
1631
.
41.
Rojas
,
J. D.
,
Papadopoulou
,
V.
,
Czernuszewicz
,
T. J.
,
Rajamahendiran
,
R. M.
,
Chytil
,
A.
,
Chiang
,
Y. C.
,
Chong
,
D. C.
,
Bautch
,
V. L.
,
Rathmell
,
W. K.
,
Aylward
,
S.
,
Gessner
,
R. C.
, and
Dayton
,
P. A.
(
2019
). “
Ultrasound measurement of vascular density to evaluate response to anti-angiogenic therapy in renal cell carcinoma
,”
IEEE Trans. Biomed. Eng.
66
,
873
880
.
42.
Sankin
,
G. N.
,
Piech
,
D.
, and
Zhong
,
P.
(
2012
). “
Stereoscopic high-speed imaging using additive colors
,”
Rev Sci Instrum
83
,
043701
.
43.
Sankin
,
G. N.
,
Simmons
,
W. N.
,
Zhu
,
S. L.
, and
Zhong
,
P.
(
2005
). “
Shock wave interaction with laser-generated single bubbles
,”
Phys. Rev. Lett.
95
,
034501
.
44.
Sass
,
W.
,
Braunlich
,
M.
,
Dreyer
,
H. P.
,
Matura
,
E.
,
Folberth
,
W.
,
Preismeyer
,
H. G.
, and
Seifert
,
J.
(
1991
). “
The mechanisms of stone disintegration by shock waves
,”
Ultrasound Med. Biol.
17
,
239
243
.
45.
Scales
,
C. D.
, Jr.
,
Curtis
,
L. H.
,
Norris
,
R. D.
,
Springhart
,
W. P.
,
Sur
,
R. L.
,
Schulman
,
K. A.
, and
Preminger
,
G. M.
(
2007
). “
Changing gender prevalence of stone disease
,”
J. Urol.
177
,
979
982
.
46.
Stamatelou
,
K. K.
,
Francis
,
M. E.
,
Jones
,
C. A.
,
Nyberg
,
L. M.
, and
Curhan
,
G. C.
(
2003
). “
Time trends in reported prevalence of kidney stones in the United States: 1976–1994
,”
Kidney Int.
63
,
1817
1823
.
47.
Stoller
,
M. L.
,
Litt
,
L.
, and
Salazar
,
R. G.
(
1989
). “
Severe hemorrhage after extracorporeal shock-wave lithotripsy
,”
Ann. Intern. Med.
111
,
612
613
.
48.
Taylor
,
E. N.
,
Stampfer
,
M. J.
, and
Curhan
,
G. C.
(
2005
). “
Obesity, weight gain, and the risk of kidney stones
,”
J. Am. Med. Assoc.
293
,
455
462
.
49.
Toro
,
K.
, and
Kardos
,
M.
(
2008
). “
Fatal renal hemorrhage after extracorporeal shock wave lithotripsy
,”
J. Forensic Sci.
53
,
1191
1193
.
50.
Treglia
,
A.
, and
Moscoloni
,
M.
(
1999
). “
Irreversible acute renal failure after bilateral extracorporeal shock wave lithotripsy
,”
J. Nephrol.
12
,
190
192
.
51.
Visscher
,
M.
,
Lajoinie
,
G.
,
Blazejewski
,
E.
,
Veldhuis
,
G.
, and
Versluis
,
M.
(
2019
). “
Laser-activated microparticles for multimodal imaging: Ultrasound and photoacoustics
,”
Phys. Med. Biol.
64
,
034001
.
52.
Vlaisavljevich
,
E.
,
Maxwell
,
A.
,
Warnez
,
M.
,
Johnsen
,
E.
,
Cain
,
C. A.
, and
Xu
,
Z.
(
2014
). “
Histotripsy-induced cavitation cloud initiation thresholds in tissues of different mechanical properties
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
61
,
341
352
.
53.
Vu
,
T.
,
Li
,
M.
,
Humayun
,
H.
,
Zhou
,
Y.
, and
Yao
,
J.
(
2020
). “
A generative adversarial network for artifact removal in photoacoustic computed tomography with a linear-array transducer
,”
Exp. Biol. Med. (Maywood)
245
,
597
605
.
54.
Xi
,
X.
, and
Zhong
,
P.
(
2001
). “
Dynamic photoelastic study of the transient stress field in solids during shock wave lithotripsy
,”
J. Acoust. Soc. Am.
109
,
1226
1239
.
55.
Xia
,
W.
,
Piras
,
D.
,
Singh
,
M. K.
,
van Hespen
,
J. C.
,
van Leeuwen
,
T. G.
,
Steenbergen
,
W.
, and
Manohar
,
S.
(
2013
). “
Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography
,”
Biomed. Opt. Express
4
,
2555
2569
.
56.
Xu
,
S.
,
Ye
,
D.
,
Wan
,
L.
,
Shentu
,
Y.
,
Yue
,
Y.
,
Wan
,
M.
, and
Chen
,
H.
(
2019
). “
Correlation between brain tissue damage and inertial cavitation dose quantified using passive cavitation imaging
,”
Ultrasound Med. Biol.
45
,
2758
2766
.
57.
Zhong
,
P.
,
Cioanta
,
I.
,
Cocks
,
F. H.
, and
Preminger
,
G. M.
(
1997
). “
Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy
,”
J. Acoustical Soc. America
101
,
2940
2950
.
58.
Zhong
,
P.
,
Cioanta
,
I.
,
Zhu
,
S.
,
Cocks
,
F. H.
, and
Preminger
,
G. M.
(
1998
). “
Effects of tissue constraint on shock wave-induced bubble expansion in vivo
,”
J. Acoust. Soc. Am.
104
,
3126
3129
.
59.
Zhong
,
P.
,
Zhou
,
Y.
, and
Zhu
,
S.
(
2001
). “
Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL
,”
Ultrasound Med. Biol.
27
,
119
134
.
60.
Zhu
,
S.
,
Cocks
,
F. H.
,
Preminger
,
G. M.
, and
Zhong
,
P.
(
2002
). “
The role of stress waves and cavitation in stone comminution in shock wave lithotripsy
,”
Ultrasound Med. Biol.
28
,
661
671
.

Supplementary Material

You do not currently have access to this content.