We introduce a model that describes spherical oscillations of encapsulated microbubbles in an unbounded surrounding fluid. A Rayleigh–Plesset-like equation is derived by coupling the Navier–Stokes equation that describes fluid dynamics with the Navier equation that describes solid dynamics via the internal/external boundary conditions. While previous models were restricted to incompressible isotropic shells, the solid shell is modeled here as a compressible viscoelastic isotropic material and then generalized to an anisotropic material. The exact value of the resonance frequency is calculated analytically, and the damping constant is computed in the approximation of weak damping. A correction of the widely used Church model for incompressible shells is evidenced, and the effects of shell compressibility and anisotropy are discussed.

1.
Abou-Saleh
,
R. H.
,
Peyman
,
S. A.
,
Critchley
,
K.
,
Evans
,
S. D.
, and
Thomson
,
N. H.
(
2013
). “
Nanomechanics of lipid encapsulated microbubbles with functional coatings
,”
Langmuir
29
(
12
),
4096
4103
.
2.
Altenbach
,
H.
,
Brigadnov
,
I. A.
, and
Eremeyev
,
V. A.
(
2008
). “
Oscillations of a magneto-sensitive elastic sphere
,”
J. Appl. Math. Mech.
88
(
6
),
497
506
.
3.
Besant
,
W. H.
(
1859
).
A Treatise on Hydrostatics and Hydrodynamics
(
Deighton, Bell, and Co
.,
London
).
4.
Buchner Santos
,
E.
,
Morris
,
J. K.
,
Glynos
,
E.
,
Sboros
,
V.
, and
Koutsos
,
V.
(
2012
). “
Nanomechanical properties of phospholipid microbubbles
,”
Langmuir
28
(
13
),
5753
5760
.
5.
Campbell
,
S.
,
Griffin
,
D. R.
,
Pearce
,
J. M.
,
Diaz-Recasens
,
J.
,
Cohen-Overbeek
,
T.
,
Willson
,
K.
, and
Teague
,
M. J.
(
1983
). “
New doppler technique for assessing uteroplacental blood flow
,”
Lancet
321
(
8326
),
675
677
.
6.
Chatterjee
,
D.
, and
Sarkar
,
K.
(
2003
). “
A Newtonian rheological model for the interface of microbubble contrast agents
,”
Ultrasound Med. Biol
29
(
12
),
1749
1757
.
7.
Chetty
,
K.
,
Stride
,
E.
,
Sennoga
,
C. A.
,
Hajnal
,
J. V.
, and
Eckersley
,
R. J.
(
2008
). “
High-speed optical observations and simulation results of SonoVue microbubbles at low-pressure insonation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
55
(
6
),
1333
1342
.
8.
Church
,
C. C.
(
1995
). “
The effects of an elastic solid surface layer on the radial pulsations of gas bubbles
,”
J. Acoust. Soc. Am.
97
(
3
),
1510
1521
.
9.
Coupier
,
G.
,
Djellouli
,
A.
, and
Quilliet
,
C.
(
2019
). “
Let's deflate that beach ball
,”
Eur. Phys. J. E
42
(
9
),
129
.
10.
Dalenbring
,
M.
(
2002
). “
An explicit formulation of a three-dimensional material damping model with transverse isotropy
,”
Int. J. Sol. Struct.
39
(
1
),
225
249
.
11.
de Jong
,
N.
,
Cornet
,
R.
, and
Lancee
,
C.
(
1994
). “
Higher harmonics of vibrating gas-filled microspheres. Part one: Simulations
,”
Ultrasonics
32
(
6
),
447
453
.
12.
de Jong
,
N.
, and
Hoff
,
L.
(
1993
). “
Ultrasound scattering properties of albunex microspheres
,”
Ultrasonics
31
(
3
),
175
181
.
13.
de Jong
,
N.
,
Hoff
,
L.
,
Skotland
,
T.
, and
Bom
,
N.
(
1992
). “
Absorption and scatter of encapsulated gas filled microspheres: Theoretical considerations and some measurements
,”
Ultrasonics
30
(
2
),
95
103
.
14.
Doinikov
,
A. A.
, and
Dayton
,
P. A.
(
2006
). “
Spatio-temporal dynamics of an encapsulated gas bubble in an ultrasound field
,”
J. Acoust. Soc. Am.
120
(
2
),
661
669
.
15.
Doinikov
,
A. A.
,
Dollet
,
B.
, and
Marmottant
,
P.
(
2018
). “
Model for the growth and the oscillation of a cavitation bubble in a spherical liquid-filled cavity enclosed in an elastic medium
,”
Phys. Rev. E
97
,
013108
.
16.
Doinikov
,
A. A.
,
Haac
,
J. F.
, and
Dayton
,
P. A.
(
2009
). “
Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles
,”
Ultrasonics
49
(
2
),
269
275
.
17.
Doinikov
,
A. A.
, and
Marmottant
,
P.
(
2018
). “
Natural oscillations of a gas bubble in a liquid-filled cavity located in a viscoelastic medium
,”
J. Sound Vib.
420
,
61
72
.
18.
Dovstam
,
K.
(
1995
). “
Augmented Hooke's law in frequency domain. A three dimensional, material damping formulation
,”
Int. J. Solids Struct.
32
(
19
),
2835
2852
.
19.
Errico
,
C.
,
Pierre
,
J.
,
Pezet
,
S.
,
Desailly
,
Y.
,
Lenkei
,
Z.
,
Couture
,
O.
, and
Tanter
,
M.
(
2015
). “
Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging
,”
Nature
527
,
499
502
.
20.
Faez
,
T.
,
Goertz
,
D.
, and
De Jong
,
N.
(
2011
). “
Characterization of Definity™ ultrasound contrast agent at frequency range of 5–15 Mhz
,”
Ultrasound Med. Biol.
37
(
2
),
338
342
.
21.
Goertz
,
D. E.
,
de Jong
,
N.
, and
van der Steen
,
A. F.
(
2007
). “
Attenuation and size distribution measurements of Definity™ and manipulated Definity™ populations
,”
Ultrasound Med. Biol.
33
(
9
),
1376
1388
.
22.
Gong
,
Y.
,
Cabodi
,
M.
, and
Porter
,
T. M.
(
2014
). “
Acoustic investigation of pressure-dependent resonance and shell elasticity of lipid-coated monodisperse microbubbles
,”
Appl. Phys. Lett.
104
(
7
),
074103
.
23.
Gorce
,
J.-M.
,
Arditi
,
M.
, and
Schneider
,
M.
(
2000
). “
Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: A study of SonoVueTM
,”
Invest. Radiol.
35
(
11
),
661
671
.
24.
Gramiak
,
R.
, and
Shah
,
P. M.
(
1968
). “
Echocardiography of the aortic root
,”
Invest. Radiol.
3
(
5
),
356
366
.
25.
Guillot
,
F. M.
, and
Trivett
,
D. H.
(
2011
). “
Complete elastic characterization of viscoelastic materials by dynamic measurements of the complex bulk and Young's moduli as a function of temperature and hydrostatic pressure
,”
J. Sound Vib.
330
(
14
),
3334
3351
.
26.
Helfield
,
B.
(
2019
). “
A review of phospholipid encapsulated ultrasound contrast agent microbubble physics
,”
Ultrasound Med. Biol.
45
(
2
),
282
300
.
27.
Helfield
,
B.
,
Leung
,
B. Y.
,
Huo
,
X.
, and
Goertz
,
D.
(
2014
). “
Scaling of the viscoelastic shell properties of phospholipid encapsulated microbubbles with ultrasound frequency
,”
Ultrasonics
54
(
6
),
1419
1424
.
28.
Helfield
,
B. L.
, and
Goertz
,
D. E.
(
2013
). “
Nonlinear resonance behavior and linear shell estimates for Definity and Micromarker assessed with acoustic microbubble spectroscopy
,”
J. Acoust. Soc. Am.
133
(
2
),
1158
1168
.
29.
Hoff
,
L.
,
Sontum
,
P. C.
, and
Hovem
,
J. M.
(
2000
). “
Oscillations of polymeric microbubbles: Effect of the encapsulating shell
,”
J. Acoust. Soc. Am.
107
(
4
),
2272
2280
.
30.
Hu
,
H.
,
Zhou
,
H.
,
Du
,
J.
,
Wang
,
Z.
,
An
,
L.
,
Yang
,
H.
,
Li
,
F.
,
Wu
,
H.
, and
Yang
,
S.
(
2011
). “
Biocompatiable hollow silica microspheres as novel ultrasound contrast agents for in vivo imaging
,”
J. Mater. Chem.
21
,
6576
6583
.
31.
Hutchinson
,
J. W.
(
1967
). “
Imperfection sensitivity of externally pressurized spherical shells
,”
J. Appl. Mech.
34
,
49
55
.
32.
Itskov
,
M.
, and
Aksel
,
N.
(
2002
). “
Elastic constants and their admissible values for incompressible and slightly compressible anisotropic materials
,”
Acta Mech.
157
,
81
96
.
33.
Khismatullin
,
D. B.
, and
Nadim
,
A.
(
2002
). “
Radial oscillations of encapsulated microbubbles in viscoelastic liquids
,”
Phys. Fluids
14
(
10
),
3534
3557
.
34.
Lakes
,
R. S.
, and
Wineman
,
A.
(
2006
). “
On Poisson's ratio in linearly viscoelastic solids
,”
J. Elast.
85
(
1
),
45
63
.
35.
Landau
,
L.
, and
Lifschitz
,
E.
(
1986
).
Theory of Elasticity
, 3rd ed. (
Elsevier Butterworth-Heinemann
,
Oxford
).
36.
Landau
,
L.
, and
Lifschitz
,
E.
(
1987
).
Fluid Mechanics
, 2nd ed. (
Elsevier Butterworth-Heinemann
,
Oxford
).
37.
Langtangen
,
H. P.
, and
Pedersen
,
G. K.
(
2016
).
Scaling of Differential Equations
(
Springer International Publishing
,
Berlin
).
38.
Lemaitre
,
J.
, and
Chaboche
,
J.-L.
(
1994
).
Mechanics of Solid Materials
(
Cambridge University Press
,
London
).
39.
Lempriere
,
B. M.
(
1968
). “
Poisson's ratio in orthotropic materials
,”
AIAA J.
6
(
11
),
2226
2227
.
40.
Li
,
Q.
,
Matula
,
T. J.
,
Tu
,
J.
,
Guo
,
X.
, and
Zhang
,
D.
(
2013
). “
Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity
,”
Phys. Med. Biol.
58
(
4
),
985
998
.
41.
Linn
,
J.
,
Lang
,
H.
, and
Tuganov
,
A.
(
2013
). “
Geometrically exact Cosserat rods with Kelvin–Voigt type viscous damping
,”
Mech. Sci.
4
,
79
96
.
42.
Liu
,
B.
,
Zhou
,
X.
,
Yang
,
F.
,
Shen
,
H.
,
Wang
,
S.
,
Zhang
,
B.
,
Zhi
,
G.
, and
Wu
,
D.
(
2014
). “
Fabrication of uniform sized polylactone microcapsules by premix membrane emulsification for ultrasound imaging
,”
Polym. Chem.
5
,
1693
1701
.
43.
Lubarda
,
V.
, and
Chen
,
M. C.
(
2008
). “
On the elastic moduli and compliances of transversely isotropic and orthotropic materials
,”
J. Mech. Mat. Struct.
3
,
153
171
.
44.
Lubarda
,
V. A.
, and
Asaro
,
R. J.
(
2014
). “
Viscoelastic response of anisotropic biological membranes. part II: Constitutive models
,”
Theor. Appl. Mech.
41
,
213
231
.
45.
Lum
,
J. S.
,
Dove
,
J. D.
,
Murray
,
T. W.
, and
Borden
,
M. A.
(
2016
). “
Single microbubble measurements of lipid monolayer viscoelastic properties for small-amplitude oscillations
,”
Langmuir
32
(
37
),
9410
9417
.
46.
Lytra
,
A.
,
Sboros
,
V.
,
Giannakopoulos
,
A.
, and
Pelekasis
,
N.
(
2020
). “
Modeling atomic force microscopy and shell mechanical properties estimation of coated microbubbles
,”
Soft Matter
16
(
19
),
4661
4681
.
47.
Marmottant
,
P.
,
van der Meer
,
S.
,
Emmer
,
M.
,
Versluis
,
M.
,
de Jong
,
N.
,
Hilgenfeldt
,
S.
, and
Lohse
,
D.
(
2005
). “
A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture
,”
J. Acoust. Soc. Am.
118
,
3499
3505
.
48.
Mohanty
,
K.
,
Papadopoulou
,
V.
,
Newsome
,
I. G.
,
Shelton
,
S.
,
Dayton
,
P. A.
, and
Muller
,
M.
(
2019
). “
Ultrasound multiple scattering with microbubbles can differentiate between tumor and healthy tissue in vivo
,”
Phys. Med. Biol.
64
,
115022
.
49.
Morgan
,
K. E.
,
Allen
,
J. S.
,
Dayton
,
P. A.
,
Chomas
,
J. E.
,
Klibaov
,
A.
, and
Ferrara
,
K. W.
(
2000
). “
Experimental and theoretical evaluation of microbubble behavior: Effect of transmitted phase and bubble size
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
(
6
),
1494
1509
.
50.
Munglani
,
G.
,
Wittel
,
F. K.
,
Vetter
,
R.
,
Bianchi
,
F.
, and
Herrmann
,
H. J.
(
2019
). “
Collapse of orthotropic spherical shells
,”
Phys. Rev. Lett.
123
,
058002
.
51.
Parrales
,
M. A.
,
Fernandez
,
J. M.
,
Perez-Saborid
,
M.
,
Kopechek
,
J. A.
, and
Porter
,
T. M.
(
2014
). “
Acoustic characterization of monodisperse lipid-coated microbubbles: Relationship between size and shell viscoelastic properties
,”
J. Acoust. Soc. Am.
136
(
3
),
1077
1084
.
52.
Paul
,
S.
,
Katiyar
,
A.
,
Sarkar
,
K.
,
Chatterjee
,
D.
,
Shi
,
W. T.
, and
Forsberg
,
F.
(
2010
). “
Material characterization of the encapsulation of an ultrasound contrast microbubble and its subharmonic response: Strain-softening interfacial elasticity model
,”
J. Acoust. Soc. Am.
127
(
6
),
3846
3857
.
53.
Paul
,
S.
,
Russakow
,
D.
,
Rodgers
,
T.
,
Sarkar
,
K.
,
Cochran
,
M.
, and
Wheatley
,
M. A.
(
2013
). “
Determination of the interfacial rheological properties of a poly(DL-lactic acid)-encapsulated contrast agent using in vitro attenuation and scattering
,”
Ultrasound Med. Biol.
39
(
7
),
1277
1291
.
54.
Pitois
,
O.
,
Buisson
,
M.
, and
Chateau
,
X.
(
2015
). “
On the collapse pressure of armored bubbles and drops
,”
Eur. Phys. J. E
38
(
5
),
48
.
55.
Plesset
,
M. S.
, and
Prosperetti
,
A.
(
1977
). “
Bubble dynamics and cavitation
,”
Annu. Rev. Fluid Mech.
9
(
1
),
145
185
.
56.
Pritz
,
T.
(
2009
). “
Relation of bulk to shear loss factor of solid viscoelastic materials
,”
J. Sound Vib.
324
(
3–5
),
514
519
.
57.
Prosperetti
,
A.
(
1987
). “
The equation of bubble dynamics in a compressible liquid
,”
Phys. Fluids
30
(
11
),
3626
3628
.
58.
Quemeneur
,
F.
,
Quilliet
,
C.
,
Faivre
,
M.
,
Viallat
,
A.
, and
Pépin-Donat
,
B.
(
2012
). “
Gel phase vesicles buckle into specific shapes
,”
Phys. Rev. Lett.
108
,
108303
.
59.
Quilliet
,
C.
(
2012
). “
Numerical deflation of beach balls with various Poisson's ratios: From sphere to bowl's shape
,”
Eur. Phys. J. E
35
,
48
.
60.
Rayleigh
,
L.
(
1917
). “
VIII. On the pressure developed in a liquid during the collapse of a spherical cavity
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
34
(
200
),
94
98
.
61.
Sarkar
,
K.
,
Shi
,
W. T.
,
Chatterjee
,
D.
, and
Forsberg
,
F.
(
2005
). “
Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation
,”
J. Acoust. Soc. Am.
118
(
1
),
539
550
.
62.
Segers
,
T.
,
de Rond
,
L.
,
de Jong
,
N.
,
Borden
,
M.
, and
Versluis
,
M.
(
2016
). “
Stability of monodisperse phospholipid-coated microbubbles formed by flow-focusing at high production rates
,”
Langmuir
32
(
16
),
3937
3944
.
63.
Segers
,
T.
,
Gaud
,
E.
,
Casqueiro
,
G.
,
Lassus
,
A.
,
Versluis
,
M.
, and
Frinking
,
P.
(
2020
). “
Foam-free monodisperse lipid-coated ultrasound contrast agent synthesis by flow-focusing through multi-gas-component microbubble stabilization
,”
Appl. Phys. Lett.
116
(
17
),
173701
.
64.
Shafi
,
A. S.
,
McClements
,
J.
,
Albaijan
,
I.
,
Abou-Saleh
,
R. H.
,
Moran
,
C.
, and
Koutsos
,
V.
(
2019
). “
Probing phospholipid microbubbles by atomic force microscopy to quantify bubble mechanics and nanostructural shell properties
,”
Colloids Surf. B
181
,
506
515
.
65.
Song
,
R.
,
Peng
,
C.
,
Xu
,
X.
,
Wang
,
J.
,
Yu
,
M.
,
Hou
,
Y.
,
Zou
,
R.
, and
Yao
,
S.
(
2018
). “
Controllable formation of monodisperse polymer microbubbles as ultrasound contrast agents
,”
ACS Appl. Mat. Int.
10
(
17
),
14312
14320
.
66.
Thompson
,
W.
, and
Kelvin
,
L.
(
1865
). “
On the elasticity and viscosity of metals
,”
Proc. R. Soc. Lond. A
14
,
289
297
.
67.
Tschoegl
,
N.
,
Knauss
,
W. G.
, and
Emri
,
I.
(
2002
). “
Poisson's ratio in linear viscoelasticity—A critical review
,”
Mech. Time Dep. Mat.
6
,
3
51
.
68.
Tsiglifis
,
K.
, and
Pelekasis
,
N. A.
(
2008
). “
Nonlinear radial oscillations of encapsulated microbubbles subject to ultrasound: The effect of membrane constitutive law
,”
J. Acoust. Soc. Am.
123
(
6
),
4059
4070
.
69.
Tu
,
J.
,
Guan
,
J.
,
Qiu
,
Y.
, and
Matula
,
T. J.
(
2009
). “
Estimating the shell parameters of SonoVue® microbubbles using light scattering
,”
J. Acoust. Soc. Am.
126
(
6
),
2954
2962
.
70.
Tu
,
J.
,
Swalwell
,
J. E.
,
Giraud
,
D.
,
Cui
,
W.
,
Chen
,
W.
, and
Matula
,
T. J.
(
2011
). “
Microbubble sizing and shell characterization using flow cytometry
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Cont.
58
(
5
),
955
963
.
71.
van der Meer
,
S. M.
,
Dollet
,
B.
,
Voormolen
,
M. M.
,
Chin
,
C. T.
,
Bouakaz
,
A.
,
de Jong
,
N.
,
Versluis
,
M.
, and
Lohse
,
D.
(
2007
). “
Microbubble spectroscopy of ultrasound contrast agents
,”
J. Acoust. Soc. Am.
121
(
1
),
648
656
.
72.
van Rooij
,
T.
,
Luan
,
Y.
,
Renaud
,
G.
,
van der Steen
,
A. F.
,
Versluis
,
M.
,
de Jong
,
N.
, and
Kooiman
,
K.
(
2015
). “
Non-linear response and viscoelastic properties of lipid-coated microbubbles: DSPC versus DPPC
,”
Ultrasound Med. Biol.
41
(
5
),
1432
1445
.
73.
Versluis
,
M.
,
Stride
,
E.
,
Lajoinie
,
G.
,
Dollet
,
B.
, and
Segers
,
T.
(
2020
). “
Ultrasound contrast agent modeling: A review
,”
Ultrasound Med. Biol.
46
(
9
),
12117
12144
.
74.
Vilov
,
S.
,
Arnal
,
B.
, and
Bossy
,
E.
(
2017
). “
Overcoming the acoustic diffraction limit in photoacoustic imaging by the localization of flowing absorbers
,”
Opt. Lett.
42
,
4379
4382
.
75.
Vincent
,
O.
, and
Marmottant
,
P.
(
2017
). “
On the statics and dynamics of fully confined bubbles
,”
J. Fluid Mech.
827
,
194
224
.
76.
Voigt
,
W.
(
1892
). “
Ueber innere reibung fester körper, insbesondere der metalle
,”
Ann. Phys. (Berlin)
283
(
12
),
671
693
.
77.
von Ende
,
S.
,
Lion
,
A.
, and
Lammering
,
R.
(
2011
). “
On the thermodynamically consistent fractional wave equation for viscoelastic solids
,”
Acta Mech.
221
,
1
10
.
78.
Wang
,
Q. X.
(
2017
). “
Oscillation of a bubble in a liquid confined in an elastic solid
,”
Phys. Fluids
29
,
072101
.
79.
Wang
,
Q.
,
Xue
,
C.
,
Qin
,
Y.
,
Zhang
,
X.
, and
Li
,
Y.
(
2020
). “
The fabrication of protein microbubbles with diverse gas core and the novel exploration on the role of interface introduction in protein crystallization
,”
Colloids Surf. A
589
,
124471
.
You do not currently have access to this content.