Broadband spectrograms from surface ships are employed in convolutional neural networks (CNNs) to predict the seabed type, ship speed, and closest point of approach (CPA) range. Three CNN architectures of differing size and depth are trained on different representations of the spectrograms. Multitask learning is employed; the seabed type prediction comes from classification, and the ship speed and CPA range are estimated via regression. Due to the lack of labeled field data, the CNNs are trained on synthetic data generated using measured sound speed profiles, four seabed types, and a random distribution of source parameters. Additional synthetic datasets are used to evaluate the ability of the trained CNNs to interpolate and extrapolate source parameters. The trained models are then applied to a measured data sample from the 2017 Seabed Characterization Experiment (SBCEX 2017). While the largest network provides slightly more accurate predictions on tests with synthetic data, the smallest network generalized better to the measured data sample. With regard to the input data type, complex pressure spectral values gave the most accurate and consistent results for the ship speed and CPA predictions with the smallest network, whereas using absolute values of the pressure provided more accurate results compared to the expected seabed types.

1.
S.
Mao
,
E.
Tu
,
G.
Zhang
,
L.
Rachmawati
,
E.
Rajabally
, and
G.-B.
Huang
, “
An automatic identification system (AIS) database for maritime trajectory prediction and data mining
,” in
Proceedings of ELM-2016
(
Springer
,
New York
,
2018
), pp.
241
257
.
2.
S. C.
Wales
and
R. M.
Heitmeyer
, “
An ensemble source spectra model for merchant ship-radiated noise
,”
J. Acoust. Soc. Am.
111
(
3
),
1211
1231
(
2002
).
3.
D. J.
Battle
,
P.
Gerstoft
,
W. A.
Kuperman
,
W. S.
Hodgkiss
, and
M.
Siderius
, “
Geoacoustic inversion of tow-ship noise via near-field-matched-field processing
,”
IEEE J. Oceanic Eng.
28
(
3
),
454
467
(
2003
).
4.
M.
Nicholas
,
J. S.
Perkins
,
G. J.
Orris
,
L. T.
Fialkowski
, and
G. J.
Heard
, “
Environmental inversion and matched-field tracking with a surface ship and an l-shaped receiver array
,”
J. Acoust. Soc. Am.
116
(
5
),
2891
2901
(
2004
).
5.
K. D.
Heaney
, “
Rapid geoacoustic characterization using a surface ship of opportunity
,”
IEEE J. Oceanic Eng.
29
(
1
),
88
99
(
2004
).
6.
C.
Park
,
W.
Seong
, and
P.
Gerstoft
, “
Geoacoustic inversion in time domain using ship of opportunity noise recorded on a horizontal towed array
,”
J. Acoust. Soc. Am.
117
(
4
),
1933
1941
(
2005
).
7.
R. A.
Koch
and
D. P.
Knobles
, “
Geoacoustic inversion with ships as sources
,”
J. Acoust. Soc. Am.
117
(
2
),
626
637
(
2005
).
8.
D.
Tollefsen
and
S. E.
Dosso
, “
Bayesian geoacoustic inversion of ship noise on a horizontal array
,”
J. Acoust. Soc. Am.
124
(
2
),
788
795
(
2008
).
9.
S. A.
Stotts
,
R. A.
Koch
,
S. M.
Joshi
,
V. T.
Nguyen
,
V. W.
Ferreri
, and
D. P.
Knobles
, “
Geoacoustic inversions of horizontal and vertical line array acoustic data from a surface ship source of opportunity
,”
IEEE J. Oceanic Eng.
35
(
1
),
79
102
(
2010
).
10.
C.
Gervaise
,
B. G.
Kinda
,
J.
Bonnel
,
Y.
Stéphan
, and
S.
Vallez
, “
Passive geoacoustic inversion with a single hydrophone using broadband ship noise
,”
J. Acoust. Soc. Am.
131
(
3
),
1999
2010
(
2012
).
11.
S. E.
Crocker
,
P. L.
Nielsen
,
J. H.
Miller
, and
M.
Siderius
, “
Geoacoustic inversion of ship radiated noise in shallow water using data from a single hydrophone
,”
J. Acoust. Soc. Am.
136
(
5
),
EL362
EL368
(
2014
).
12.
S.-H.
Byun
,
C. M.
Verlinden
, and
K. G.
Sabra
, “
Blind deconvolution of shipping sources in an ocean waveguide
,”
J. Acoust. Soc. Am.
141
(
2
),
797
807
(
2017
).
13.
K. L.
Gemba
,
J.
Sarkar
,
B.
Cornuelle
,
W. S.
Hodgkiss
, and
W.
Kuperman
, “
Estimating relative channel impulse responses from ships of opportunity in a shallow water environment
,”
J. Acoust. Soc. Am.
144
(
3
),
1231
1244
(
2018
).
14.
L.
Muzi
,
M.
Siderius
, and
C. M.
Verlinden
, “
Passive bottom reflection-loss estimation using ship noise and a vertical line array
,”
J. Acoust. Soc. Am.
141
(
6
),
4372
4379
(
2017
).
15.
L.
Xu
,
K.
Yang
, and
Q.
Yang
, “
Joint time-frequency inversion for seabed properties of ship noise on a vertical line array in south china sea
,”
IEEE Access
6
,
62856
62864
(
2018
).
16.
D.
Tollefsen
and
S. E.
Dosso
, “
Three-dimensional source tracking in an uncertain environment
,”
J. Acoust. Soc. Am.
125
(
5
),
2909
2917
(
2009
).
17.
D.
Tollefsen
, “
Bayesian geoacoustic inversion and source tracking for horizontal line array data
,”
J. Acoust. Soc. Am.
128
(
1
),
506
(
2010
).
18.
D.
Tollefsen
and
S. E.
Dosso
, “
Three-dimensional localization of multiple sources in an uncertain ocean environment
,”
Proc. Mtgs. Acoust.
19
(
1
),
070071
(
2013
).
19.
D.
Tollefsen
,
P.
Gerstoft
, and
W. S.
Hodgkiss
, “
Multiple-array passive acoustic source localization in shallow water
,”
J. Acoust. Soc. Am.
141
(
3
),
1501
1513
(
2017
).
20.
Z.
Huang
,
J.
Xu
,
Z.
Gong
,
H.
Wang
, and
Y.
Yan
, “
Source localization using deep neural networks in a shallow water environment
,”
J. Acoust. Soc. Am.
143
(
5
),
2922
2932
(
2018
).
21.
H.
Niu
,
E.
Ozanich
, and
P.
Gerstoft
, “
Ship localization in santa barbara channel using machine learning classifiers
,”
J. Acoust. Soc. Am.
142
(
5
),
EL455
EL460
(
2017
).
22.
H.
Niu
,
E.
Reeves
, and
P.
Gerstoft
, “
Source localization in an ocean waveguide using supervised machine learning
,”
J. Acoust. Soc. Am.
142
(
3
),
1176
1188
(
2017
).
23.
H.
Niu
,
Z.
Gong
,
E.
Ozanich
,
P.
Gerstoft
,
H.
Wang
, and
Z.
Li
, “
Deep learning for ocean acoustic source localization using one sensor
,” arXiv:1903.12319 (
2019
).
24.
E.
Ozanich
,
P.
Gerstoft
, and
H.
Niu
, “
A deep network for single-snapshot direction of arrival estimation
,” in
2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP)
(
IEEE
,
New York
,
2019
), pp.
1
6
.
25.
E.
Ozanich
,
P.
Gerstoft
, and
H.
Niu
, “
A feedforward neural network for direction-of-arrival estimation
,”
J. Acoust. Soc. Am.
147
(
3
),
2035
2048
(
2020
).
26.
E. L.
Ferguson
,
R.
Ramakrishnan
,
S. B.
Williams
, and
C. T.
Jin
, “
Convolutional neural networks for passive monitoring of a shallow water environment using a single sensor
,” in
2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(
IEEE
,
New York
,
2017
), pp.
2657
2661
.
27.
W.
Liu
,
Y.
Yang
,
M.
Xu
,
L.
,
Z.
Liu
, and
Y.
Shi
, “
Source localization in the deep ocean using a convolutional neural network
,”
J. Acoust. Soc. Am.
147
(
4
),
EL314
EL319
(
2020
).
28.
P. S.
Wilson
,
D. P.
Knobles
, and
T. B.
Neilsen
, “
Guest editorial an overview of the seabed characterization experiment
,”
IEEE J. Oceanic Eng.
45
(
1
),
1
13
(
2020
).
29.
E. K.
Westwood
,
C. T.
Tindle
, and
N. R.
Chapman
, “
A normal mode model for acousto-elastic ocean environments
,”
J. Acoust. Soc. Am.
100
(
6
),
3631
3645
(
1996
).
30.
D. F.
Van Komen
,
T. B.
Neilsen
,
K.
Howarth
,
D. P.
Knobles
, and
P. H.
Dahl
, “
Seabed and range estimation of impulsive time series using a convolutional neural network
,”
J. Acoust. Soc. Am.
147
(
5
),
EL403
EL408
(
2020
).
31.
D. P.
Knobles
,
R. A.
Koch
,
L. A.
Thompson
,
K. C.
Focke
, and
P. E.
Eisman
, “
Broadband sound propagation in shallow water and geoacoustic inversion
,”
J. Acoust. Soc. Am.
113
(
1
),
205
222
(
2003
).
32.
D. P.
Knobles
,
P. S.
Wilson
,
J. A.
Goff
,
L.
Wan
,
M. J.
Buckingham
,
J. D.
Chaytor
, and
M.
Badiey
, “
Maximum entropy derived statistics of sound-speed structure in a fine-grained sediment inferred from sparse broadband acoustic measurements on the new england continental shelf
,”
IEEE J. Oceanic Eng.
45
,
161
173
(
2020
).
33.
G. R.
Potty
,
J. H.
Miller
, and
J. F.
Lynch
, “
Inversion for sediment geoacoustic properties at the new england bight
,”
J. Acoust. Soc. Am.
114
(
4
),
1874
1887
(
2003
).
34.
J.-X.
Zhou
,
X.-Z.
Zhang
, and
D. P.
Knobles
, “
Low-frequency geoacoustic model for the effective properties of sandy seabottoms
,”
J. Acoust. Soc. Am.
125
(
5
),
2847
2866
(
2009
).
35.
C. M.
Bishop
,
Neural Networks for Pattern Recognition
(
Oxford University Press
,
Oxford, UK
,
1995
).
36.
A.
Krizhevsky
,
I.
Sutskever
, and
G. E.
Hinton
, “
Imagenet classification with deep convolutional neural networks
,” in
Advances in Neural Information Processing Systems
(
2012
), pp.
1097
1105
).
37.
J.
Deng
,
W.
Dong
,
R.
Socher
,
L.-J.
Li
,
K.
Li
, and
L.
Fei-Fei
, “
Imagenet: A large-scale hierarchical image database
,” in
2009 IEEE Conference on Computer Vision and Pattern Recognition
IEEE, New York
,
2009
), pp.
248
255
.
38.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
, and
L.
Antiga
, “
Pytorch: An imperative style, high-performance deep learning library
,” in
Advances in Neural Information Processing Systems
(
2019
), pp.
8024
8035
.
39.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
40.
D. F.
Van Komen
,
T. B.
Neilsen
,
D. P.
Knobles
, and
M.
Badiey
, “
A convolutional neural network for source range and ocean seabed classification using pressure time-series
,”
Proc. Mtgs. Acoust.
36
(
1
),
070004
(
2019
).
41.
I.
Loshchilov
and
F.
Hutter
, “
Sgdr: Stochastic gradient descent with warm restarts
,” arXiv:1608.03983 (
2016
).
42.
T. B.
Neilsen
,
C. D.
Escobar
,
M. C.
Acree
,
W. S.
Hodgkiss
,
D. F.
Van Komen
,
D. P.
Knobles
,
M.
Badiey
, and
J.
Castro
, “
Learning source location and seabed type from towed mid-frequency tonals on a vertical line array
,”
J. Acoust. Soc. Am.
149
(
1
),
692
705
(
2021
).
43.
A.
Kendall
,
Y.
Gal
, and
R.
Cipolla
, “
Multi-task learning using uncertainty to weigh losses for scene geometry and semantics
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(
2018
), pp.
7482
7491
.
44.
This suggestion was given by Tony-Y on the
https://discuss.pytorch.org/t/how-to-learn-the-weights-between-two-losses/39681/12 PyTorch online forums (Last viewed May 19, 2020).
45.
R.
Kohavi
, “
A study of cross-validation and bootstrap for accuracy estimation and model selection
,” in
IJCAI
,
Montreal, Canada
(
1995
), Vol.
14
, pp.
1137
1145
.
You do not currently have access to this content.