The convex sparse penalty based compressive beamforming technique can achieve robust high resolution in direction-of-arrival (DOA) estimation tasks, but it often leads to an insufficient sparsity-inducing problem due to its convex loose approximation to ideal 0 nonconvex penalty. On the contrary, the nonconvex sparse penalty can tightly approximate 0 penalty to effectively enhance DOA estimation accuracy, but it incurs an initialization sensitivity problem due to its multiple local minimas. Leveraging their individual advantages, a minimax-concave penalty (MCP) regularized DOA estimation algorithm is proposed to achieve a maximally sparse level while maintaining the convex property of the overall objective function. Moreover, an accelerated block gradient descent-ascent algorithm with convergence guarantee is developed to rapidly achieve its one optimal point. Simulation results demonstrate that MCP penalty improves DOA estimation accuracy compared with popular sparse compressive beamforming techniques in strong noise scenarios and weak source confirmation. Ocean experimental results also validate that it retains more stable DOA estimation accuracy and incurs less artificial interferences.

1.
P.
Gerstoft
,
C. F.
Mecklenbräuker
,
W.
Seong
, and
M.
Bianco
, “
Introduction to compressive sensing in acoustics
,”
J. Acoust. Soc. Am
143
(
6
),
3731
3736
(
2018
).
2.
G. F.
Edelmann
and
C. F.
Gaumond
, “
Beamforming using compressive sensing
,”
J. Acoust. Soc. Am.
130
(
4
),
EL232
EL237
(
2011
).
3.
D.
Malioutov
,
M.
Cetin
, and
A. S.
Willsky
, “
A sparse signal reconstruction perspective for source localization with sensor arrays
,”
IEEE Trans. Signal Process.
53
(
8
),
3010
3022
(
2005
).
4.
S.
Fortunati
,
R.
Grasso
,
F.
Gini
,
M. S.
Greco
, and
K.
LePage
, “
Single-snapshot DOA estimation by using compressed sensing
,”
EURASIP J. Adv. Signal Process.
2014
(
1
),
120
(
2014
).
5.
G.
David
,
J.-L.
Robert
,
B.
Zhang
, and
A. F.
Laine
, “
Time domain compressive beam forming of ultrasound signals
,”
J. Acoust. Soc. Am.
137
(
5
),
2773
2784
(
2015
).
6.
F.
Le Courtois
and
J.
Bonnel
, “
Compressed sensing for wideband wavenumber tracking in dispersive shallow water
,”
J. Acoust. Soc. Am.
138
(
2
),
575
583
(
2015
).
7.
Y.
Park
,
P.
Gerstoft
, and
W.
Seong
, “
Grid-free compressive mode extraction
,”
J. Acoust. Soc. Am.
145
(
3
),
1427
1442
(
2019
).
8.
W.
Jiang
,
S.
Zheng
,
Y.
Zhou
,
F.
Tong
, and
R.
Kastner
, “
Exploiting time varying sparsity for underwater acoustic communication via dynamic compressed sensing
,”
J. Acoust. Soc. Am.
143
(
6
),
3997
4007
(
2018
).
9.
Z.
Yang
,
J.
Li
,
P.
Stoica
, and
L.
Xie
, “
Chapter 11—Sparse methods for direction-of-arrival estimation
,” in
Academic Press Library in Signal Processing
, edited by
R.
Chellappa
and
S.
Theodoridis
(
Academic Press
,
New York
,
2018
),
Vol. 7
, pp.
509
581
.
10.
A.
Xenaki
,
P.
Gerstoft
, and
K.
Mosegaard
, “
Compressive beamforming
,”
J. Acoust. Soc. Am.
136
(
1
),
260
271
(
2014
).
11.
P.
Gerstoft
,
A.
Xenaki
, and
C. F.
Mecklenbräuker
, “
Multiple and single snapshot compressive beamforming
,”
J. Acoust. Soc. Am
138
(
4
),
2003
2014
(
2015
).
12.
M. N.
Tabassum
and
E.
Ollila
, “
Sequential adaptive elastic net approach for single-snapshot source localization
,”
J. Acoust. Soc. Am.
143
(
6
),
3873
3882
(
2018
).
13.
Y.
Choo
and
W.
Seong
, “
Compressive spherical beamforming for localization of incipient tip vortex cavitation
,”
J. Acoust. Soc. Am.
140
(
6
),
4085
4090
(
2016
).
14.
T.
Sun
,
P.
Blondel
,
B.
Jia
,
G.
Li
, and
E.
Gao
, “
Compressive sensing method to leverage prior information for submerged target echoes
,”
J. Acoust. Soc. Am.
144
(
3
),
1406
1415
(
2018
).
15.
K. L.
Gemba
,
W. S.
Hodgkiss
, and
P.
Gerstoft
, “
Adaptive and compressive matched field processing
,”
J. Acoust. Soc. Am.
141
(
1
),
92
103
(
2017
).
16.
E.
Fernandez-Grande
,
A.
Xenaki
, and
P.
Gerstoft
, “
A sparse equivalent source method for near-field acoustic holography
,”
J. Acoust. Soc. Am
141
(
1
),
532
542
(
2017
).
17.
J.
Hald
, “
A comparison of iterative sparse equivalent source methods for near-field acoustical holography
,”
J. Acoust. Soc. Am.
143
(
6
),
3758
3769
(
2018
).
18.
M.
Jia
,
J.
Zhang
,
Y.
Wu
, and
J.
Wang
, “
Sound field reproduction via the alternating direction method of multipliers based lasso plus regularized least-square
,”
IEEE Access.
6
,
54550
54563
(
2018
).
19.
Q.
Feng
,
F.
Yang
, and
J.
Yang
, “
Time-domain sound field reproduction using the group LASSO
,”
J. Acoust. Soc. Am.
143
(
2
),
EL55
EL60
(
2018
).
20.
Y.
Yang
,
Y.
Zhang
, and
L.
Yang
, “
Wideband sparse spatial spectrum estimation using matrix filter with nulling in a strong interference environment
,”
J. Acoust. Soc. Am.
143
(
6
),
3891
3898
(
2018
).
21.
O.
Lylloff
,
E.
Fernández-Grande
,
F.
Agerkvist
,
J.
Hald
,
E. T.
Roig
, and
M. S.
Andersen
, “
Improving the efficiency of deconvolution algorithms for sound source localization
,”
J. Acoust. Soc. Am.
138
(
1
),
172
180
(
2015
).
22.
M. E.
Tipping
, “
Sparse Bayesian learning and the relevance vector machine
,”
J. Mach. Learn. Res.
1
,
211
244
(
2001
).
23.
R.
Giri
and
B.
Rao
, “
Type I and type II Bayesian methods for sparse signal recovery using scale mixtures
,”
IEEE Trans. Signal Process.
64
(
13
),
3418
3428
(
2016
).
24.
K. L.
Gemba
,
S.
Nannuru
,
P.
Gerstoft
, and
W. S.
Hodgkiss
, “
Multi-frequency sparse Bayesian learning for robust matched field processing
,”
J. Acoust. Soc. Am.
141
(
5
),
3411
3420
(
2017
).
25.
A.
Xenaki
,
J.
Bünsow Boldt
, and
M. G.
Christensen
, “
Sound source localization and speech enhancement with sparse Bayesian learning beamforming
,”
J. Acoust. Soc. Am.
143
(
6
),
3912
3921
(
2018
).
26.
S.
Nannuru
,
A.
Koochakzadeh
,
K. L.
Gemba
,
P.
Pal
, and
P.
Gerstoft
, “
Sparse Bayesian learning for beamforming using sparse linear arrays
,”
J. Acoust. Soc. Am.
144
(
5
),
2719
2729
(
2018
).
27.
P.
Gerstoft
,
C. F.
Mecklenbrauker
,
A.
Xenaki
, and
S.
Nannuru
, “
Multisnapshot sparse Bayesian learning for DOA
,”
IEEE Signal Process. Lett.
23
(
10
),
1469
1473
(
2016
).
28.
J.
Yang
,
G.
Liao
, and
J.
Li
, “
An efficient off-grid DOA estimation approach for nested array signal processing by using sparse Bayesian learning strategies
,”
Signal Process.
128
,
110
122
(
2016
).
29.
J.
Yang
,
Y.
Yang
, and
J.
Lu
, “
A variational Bayesian strategy for solving the DOA estimation problem in sparse array
,”
Digit. Signal Process.
90
,
28
35
(
2019
).
30.
J.
Zhu
,
Q.
Zhang
,
P.
Gerstoft
,
M.-A.
Badiu
, and
Z.
Xu
, “
Grid-less variational Bayesian line spectral estimation with multiple measurement vectors
,”
Signal Process.
161
,
155
164
(
2019
).
31.
I. W.
Selesnick
and
I.
Bayram
, “
Sparse signal estimation by maximally sparse convex optimization
,”
IEEE Trans. Signal Process.
62
(
5
),
1078
1092
(
2014
).
32.
M.
Lai
,
Y.
Xu
, and
W.
Yin
, “
Improved iteratively reweighted least squares for unconstrained smoothed ℓq minimization
,”
SIAM J. Numer. Anal.
51
(
2
),
927
957
(
2013
).
33.
E. J.
Candès
,
M. B.
Wakin
, and
S. P.
Boyd
, “
Enhancing sparsity by reweighted ℓ1 minimization
,”
J. Fourier Anal. Appl.
14
(
5
),
877
905
(
2008
).
34.
C.-H.
Zhang
, “
Nearly unbiased variable selection under minimax concave penalty
,”
Ann. Statist.
38
(
2
),
894
942
(
2010
).
35.
C.
Soussen
,
J.
Idier
,
J.
Duan
, and
D.
Brie
, “
Homotopy based algorithms for ℓ0-regularized least-squares
,”
IEEE Trans. Signal Process.
63
(
13
),
3301
3316
(
2015
).
36.
L.
Chen
and
Y.
Gu
, “
The convergence guarantees of a non-convex approach for sparse recovery
,”
IEEE Trans. Signal Process.
62
(
15
),
3754
3767
(
2014
).
37.
D. P.
Wipf
,
B. D.
Rao
, and
S.
Nagarajan
, “
Latent variable Bayesian models for promoting sparsity
,”
IEEE Trans. Inf. Theory
57
(
9
),
6236
6255
(
2011
).
38.
I.
Selesnick
, “
Sparse regularization via convex analysis
,”
IEEE Trans. Signal Process.
65
(
17
),
4481
4494
(
2017
).
39.
N.
Parikh
and
S.
Boyd
, “
Proximal algorithms
,”
Found. Trends Optim.
1
(
3
),
127
239
(
2014
).
40.
P. L.
Combettes
and
J.-C.
Pesquet
, “
Proximal splitting methods in signal processing
,” in
Fixed-Point Algorithms for Inverse Problems in Science and Engineering
(
Springer
,
New York
,
2011
), pp.
185
212
.
41.
Y.
Xu
and
W.
Yin
, “
Block stochastic gradient iteration for convex and nonconvex optimization
,”
SIAM J. Optim.
25
(
3
),
1686
1716
(
2015
).
42.
Z.
Du
,
X.
Chen
,
H.
Zhang
,
R.
Yan
, and
W.
Yin
, “
Learning collaborative sparsity structure via nonconvex optimization for feature recognition
,”
IEEE Trans. Ind. Informat.
14
(
10
),
4417
4430
(
2018
).
43.
Y.
Nesterov
, “
A method for unconstrained convex minimization problem with the rate of convergence O(1/k2)
,”
Sov. Math. Dokl.
27
(
2
),
372
376
(
1983
).
44.
A.
Beck
and
M.
Teboulle
, “
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
,”
SIAM J. Imaging Sci.
2
(
1
),
183
202
(
2009
).
45.
J.
Bolte
,
S.
Sabach
, and
M.
Teboulle
, “
Proximal alternating linearized minimization for nonconvex and nonsmooth problems
,”
Math. Program.
146
(
1
),
459
494
(
2014
).
46.
T.
Pock
and
S.
Sabach
, “
Inertial proximal alternating linearized minimization (IPALM) for nonconvex and nonsmooth problems
,”
SIAM J. Imaging Sci.
9
(
4
),
1756
1787
(
2016
).
47.
H.
Attouch
and
J.
Bolte
, “
On the convergence of the proximal algorithm for nonsmooth functions involving analytic features
,”
Math. Program.
116
(
1
),
5
16
(
2009
).
48.
Y.
Xu
and
W.
Yin
, “
A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion
,”
SIAM J. Imaging Sci
6
(
3
),
1758
1789
(
2013
).
You do not currently have access to this content.