This study examines the use of Gaussian process (GP) regression for sound field reconstruction. GPs enable the reconstruction of a sound field from a limited set of observations based on the use of a covariance function (a kernel) that models the spatial correlation between points in the sound field. Significantly, the approach makes it possible to quantify the uncertainty on the reconstruction in a closed form. In this study, the relation between reconstruction based on GPs and classical reconstruction methods based on linear regression is examined from an acoustical perspective. Several kernels are analyzed for their potential in sound field reconstruction, and a hierarchical Bayesian parameterization is introduced, which enables the construction of a plane wave kernel of variable sparsity. The performance of the kernels is numerically studied and compared to classical reconstruction methods based on linear regression. The results demonstrate the benefits of using GPs in sound field analysis. The hierarchical parameterization shows the overall best performance, adequately reconstructing fundamentally different sound fields. The approach appears to be particularly powerful when prior knowledge of the sound field would not be available.

1.
H.
Ito
,
S.
Koyama
,
N.
Ueno
, and
H.
Saruwatari
, “
Feedforward spatial active noise control based on kernel interpolation of sound field
,” in
Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
,
Brighton, UK
(May 12–17,
2019
), pp.
511
515
.
2.
F.
Heuchel
,
D.
Caviedes Nozal
, and
F. T.
Agerkvist
, “
Sound field control for reduction of noise from outdoor concerts
,” in
Proceedings of Audio Engineering Society Convention 145
,
New York, NY
(October 17–20,
2018
).
3.
D.
Caviedes-Nozal
,
F. M.
Heuchel
,
J.
Brunskog
,
N. A.
Riis
, and
E.
Fernandez-Grande
, “
A Bayesian spherical harmonics source radiation model for sound field control
,”
J. Acoust. Soc. Am.
146
(
5
),
3425
3435
(
2019
).
4.
F. M.
Heuchel
,
D.
Caviedes-Nozal
,
J.
Brunskog
,
F. T.
Agerkvist
, and
E.
Fernandez-Grande
, “
Large-scale outdoor sound field control
,”
J. Acoust. Soc. Am.
148
(
4
),
2392
2402
(
2020
).
5.
E. G.
Williams
, “
Plane waves
,” in
Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography
(
Elsevier
,
Amsterdam
,
1999
), Chap. 2.
6.
R.
Mignot
,
L.
Daudet
, and
F.
Ollivier
, “
Room reverberation reconstruction: Interpolation of the early part using compressed sensing
,”
IEEE Trans. Audio Speech Lang. Process.
21
(
11
),
2301
2312
(
2013
).
7.
M.
Nolan
,
E.
Fernandez-Grande
,
J.
Brunskog
, and
C.-H.
Jeong
, “
A wavenumber approach to quantifying the isotropy of the sound field in reverberant spaces
,”
J. Acoust. Soc. Am.
143
(
4
),
2514
2526
(
2018
).
8.
S. A.
Verburg
and
E.
Fernandez-Grande
, “
Reconstruction of the sound field in a room using compressive sensing
,”
J. Acoust. Soc. Am.
143
(
6
),
3770
3779
(
2018
).
9.
T.
Betlehem
and
T. D.
Abhayapala
, “
Theory and design of sound field reproduction in reverberant rooms
,”
J. Acoust. Soc. Am.
117
(
4
),
2100
2111
(
2005
).
10.
Q.
Zhu
,
X.
Qiu
,
P.
Coleman
, and
I.
Burnett
, “
A comparison between two modal domain methods for personal audio reproduction
,”
J. Acoust. Soc. Am.
147
(
1
),
161
173
(
2020
).
11.
G. H.
Koopmann
,
L.
Song
, and
J. B.
Fahnline
, “
A method for computing acoustic fields based on the principle of wave superposition
,”
J. Acoust. Soc. Am.
86
(
6
),
2433
2438
(
1989
).
12.
A.
Sarkissian
, “
Method of superposition applied to patch near-field acoustic holography
,”
J. Acoust. Soc. Am.
118
(
2
),
671
678
(
2005
).
13.
E.
Fernandez-Grande
, “
Sound field reconstruction using a spherical microphone array
,”
J. Acoust. Soc. Am.
139
(
3
),
1168
1178
(
2016
).
14.
C.-X.
Bi
,
Y.
Liu
,
L.
Xu
, and
Y.-B.
Zhang
, “
Sound field reconstruction using compressed modal equivalent point source method
,”
J. Acoust. Soc. Am.
141
(
1
),
73
79
(
2017
).
15.
N.
Ueno
,
S.
Koyama
, and
H.
Saruwatari
, “
Sound field recording using distributed microphones based on harmonic analysis of infinite order
,”
IEEE Signal Process. Lett.
25
(
1
),
135
139
(
2018
).
16.
N.
Ueno
,
S.
Koyama
, and
H.
Saruwatari
, “
Kernel ridge regression with constraint of Helmholtz equation for sound field interpolation
,” in
Proceedings of the 16th International Workshop on Acoustic Signal Enhancement
,
Tokyo, Japan
(September 17–20,
2018
).
17.
V. M.
Merwade
,
D. R.
Maidment
, and
J. A.
Goff
, “
Anisotropic considerations while interpolating river channel bathymetry
,”
J. Hydrol.
331
(
3-4
),
731
741
(
2006
).
18.
K. R.
James
and
D. R.
Dowling
, “
A probability density function method for acoustic field uncertainty analysis
,”
J. Acoust. Soc. Am.
118
(
5
),
2802
2810
(
2005
).
19.
C.-F.
Huang
,
P.
Gerstoft
, and
W. S.
Hodgkiss
, “
Validation of statistical estimation of transmission loss in the presence of geoacoustic inversion uncertainty
,”
J. Acoust. Soc. Am.
120
(
4
),
1932
1941
(
2006
).
20.
J.
Antoni
,
C.
Vanwynsberghe
,
T.
Le Magueresse
,
S.
Bouley
, and
L.
Gilquin
, “
Mapping uncertainties involved in sound source reconstruction with a cross-spectral-matrix-based Gibbs sampler
,”
J. Acoust. Soc. Am.
146
(
6
),
4947
4961
(
2019
).
21.
N.
Xiang
, “
Model-based Bayesian analysis in acoustics-a tutorial
,”
J. Acoust. Soc. Am.
148
(
2
),
1101
1120
(
2020
).
22.
J.-P.
Chilès
and
N.
Desassis
, “
Fifty years of Kriging
,” in
Handbook of Mathematical Geosciences: Fifty Years of IAMG
(
Springer International Publishing
,
New York
,
2018
). pp.
589
612
.
23.
A. P.
Valentine
and
M.
Sambridge
, “
Gaussian process models—I. A framework for probabilistic continuous inverse theory
,”
Geophys. J. Int.
220
(
3
),
1632
1647
(
2020
).
24.
A. P.
Valentine
and
M.
Sambridge
, “
Gaussian process models—II. Lessons for discrete inversion
,”
Geophys. J. Int.
220
(
3
),
1648
1656
(
2020
).
25.
H.
Takeda
,
S.
Farsiu
, and
P.
Milanfar
, “
Kernel regression for image processing and reconstruction
,”
IEEE Trans. Image Process.
16
(
2
),
349
366
(
2007
).
26.
R.
Boloix-Tortosa
,
J. J.
Murillo-Fuentes
,
F. J.
Payán-Somet
, and
F.
Pérez-Cruz
, “
Complex Gaussian processes for regression
,”
IEEE Trans. Neural Networks Learn. Syst.
29
(
11
),
5499
5511
(
2018
).
27.
A.
Liutkus
,
R.
Badeau
, and
G.
Richard
, “
Gaussian processes for underdetermined source separation
,”
IEEE Trans. Signal Process.
59
(
7
),
3155
3167
(
2011
).
28.
M. J.
Bianco
,
P.
Gerstoft
,
J.
Traer
,
E.
Ozanich
,
M. A.
Roch
,
S.
Gannot
, and
C.-A.
Deledalle
, “
Machine learning in acoustics: Theory and applications
,”
J. Acoust. Soc. Am.
146
(
5
),
3590
3628
(
2019
).
29.
M.
Nolan
,
S. A.
Verburg
,
J.
Brunskog
, and
E.
Fernandez-Grande
, “
Experimental characterization of the sound field in a reverberation room
,”
J. Acoust. Soc. Am.
145
(
4
),
2237
2246
(
2019
).
30.
K. L.
Gemba
,
S.
Nannuru
,
P.
Gerstoft
, and
W. S.
Hodgkiss
, “
Multi-frequency sparse Bayesian learning for robust matched field processing
,”
J. Acoust. Soc. Am.
141
(
5
),
3411
3420
(
2017
).
31.
A.
Xenaki
,
J.
Bünsow Boldt
, and
M.
Græsbøll Christensen
, “
Sound source localization and speech enhancement with sparse Bayesian learning beamforming
,”
J. Acoust. Soc. Am.
143
(
6
),
3912
3921
(
2018
).
32.
K. L.
Gemba
,
S.
Nannuru
, and
P.
Gerstoft
, “
Robust ocean acoustic localization with sparse Bayesian learning
,”
IEEE J. Sel. Top. Sig. Process.
13
(
1
),
49
60
(
2019
).
33.
E.
Fernandez-Grande
,
A.
Xenaki
, and
P.
Gerstoft
, “
A sparse equivalent source method for near-field acoustic holography
,”
J. Acoust. Soc. Am.
141
(
1
),
532
542
(
2017
).
34.
J.
Antoni
, “
A Bayesian approach to sound source reconstruction: Optimal basis, regularization, and focusing
,”
J. Acoust. Soc. Am.
131
(
4
),
2873
2890
(
2012
).
35.
C. E.
Rasmussen
and
C. K. I.
Williams
,
Gaussian Processes for Machine Learning
(
MIT Press
,
Cambridge, MA
,
2005
).
36.
A.
Pereira
,
J.
Antoni
, and
Q.
Leclère
, “
Empirical Bayesian regularization of the inverse acoustic problem
,”
Appl. Acoust.
97
,
11
29
(
2015
).
37.
F.
Jacobsen
and
P. M.
Juhl
, “
Statistical room acoustics
,” in
Fundamentals of General Linear Acoustics
(
John Wiley & Sons
,
New York
,
2013
), Chap. 8.3.
38.
P.
Abrahamsen
,
A Review of Gaussian Random Fields and Correlation Functions
(
Norwegian Computing Center
,
Oslo, Norway
,
1997
).
39.
C. M.
Bishop
, “
Kernel methods
,” in
Pattern Recognition and Machine Learning
(
Springer
,
New York
,
2006
), Chap. 6.
40.
D. J.
MacKay
, “
Introduction to Gaussian processes
,”
NATO ASI Ser. Comput. Syst. Sci.
168
,
133
166
(
1998
).
41.
G. E.
Fasshauer
, “
Green's functions: Taking another look at kernel approximation, radial basis functions, and splines
,” in
Approximation Theory XIII: San Antonio 2010
(
Springer
,
New York
,
2012
), pp.
37
63
.
42.
M. E.
Tipping
, “
Sparse Bayesian learning and the relevance vector machine
,”
J. Mach. Learn. Res.
1
,
211
244
(
2001
).
43.
M.
Abramowitz
,
Abramowitz and Stegun: Handbook of Mathematical Functions
(
US Department of Commerce
,
Washington, DC
,
1972
).
44.
K. P.
Murphy
, “
Some common continuous distributions
,” in
Machine Learning: A Probabilistic Perspective
(
MIT Press
,
Cambridge, MA
,
2012
), Chap. 2.4.
45.
J.
Piironen
and
A.
Vehtari
, “
Sparsity information and regularization in the horseshoe and other shrinkage priors
,”
Electron. J. Stat.
11
(
2
),
5018
5051
(
2017
).
46.
M. D.
Hoffman
and
A.
Gelman
, “
The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo
,”
J. Mach. Learn. Res.
15
(
1
),
1593
1623
(
2014
).
47.
S. N.
Wood
, “
Smoothness selection criteria
,” in
Generalized Additive Models: An Introduction with R
(
Chapman and Hall/CRC
,
London
,
2017
), Chap. 6.2.
48.
P. C.
Hansen
,
Discrete Inverse Problems: Insight and Algorithms
(
SIAM
,
Philadelphia, PA
,
2010
).
49.
P. J.
Schreier
and
L. L.
Scharf
, “
The bivariate Gaussian distribution and its complex representation
,” in
Statistical Signal Processing of Complex-Valued Data: The Theory of Improper and Noncircular Signals
(
Cambridge University Press
,
Cambridge, UK
,
2010
), Chap. 1.6.
50.
D.
Caviedes-Nozal
, “
Acoustic Gaussian Processes
,” https://github.com/d-caviedes/acoustic_gps (Last_accessed: 05/02/2021).
You do not currently have access to this content.