A numerical technique is proposed for synthesizing realizations of airfoil surface pressure induced by incoming turbulence. In this approach, realization of the surface pressure field is expressed as a set of uncorrelated wall plane waves. The amplitude of these plane waves is determined from the power spectrum density function of the incoming upwash velocity fluctuation and the airfoil aeroacoustic transfer function. The auto-spectrum of the surface pressure is obtained from an ensemble average of different realizations. The numerical technique is computationally efficient as it rapidly converges using a relatively small number of realizations. The surface pressures for different airfoils excited by incoming turbulence are numerically predicted, and the results are compared with experimental data in the literature. Further, the unsteady force exerted on an airfoil due to the airfoil-turbulence interaction is also computed, and it is shown to be in very good agreement with analytical results.

1.
Abramowitz
,
M.
, and
Stegun
,
I. A.
(
1948
).
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
(
U.S. Government Printing Office
,
Washington, DC
), Vol.
55
.
2.
Amiet
,
R.
(
1976a
). “
Noise due to turbulent flow past a trailing edge
,”
J. Sound Vib.
47
(
3
),
387
393
.
3.
Amiet
,
R.
(
1975
). “
Acoustic radiation from an airfoil in a turbulent stream
,”
J. Sound Vib.
41
(
4
),
407
420
.
4.
Amiet
,
R.
(
1978
). “
Effect of the incident surface pressure field on noise due to turbulent flow past a trailing edge
,”
J. Sound Vib.
57
(
2
),
305
306
.
5.
Amiet
,
R. K.
(
1976b
). “
High frequency thin-airfoil theory for subsonic flow
,”
AIAA J.
14
(
8
),
1076
1082
.
6.
Anderson
,
J. M.
,
Catlett
,
M. R.
, and
Stewart
,
D. O.
(
2015
). “
Modeling rotor unsteady forces and sound due to homogeneous turbulence ingestion
,”
AIAA J.
53
(
1
),
81
92
.
7.
Ayton
,
L. J.
, and
Chaitanya
,
P.
(
2017
). “
Analytical and experimental investigation into the effects of leading-edge radius on gust–aerofoil interaction noise
,”
J. Fluid Mech.
829
,
780
808
.
8.
Ayton
,
L. J.
, and
Peake
,
N.
(
2016
). “
Interaction of turbulence with the leading-edge stagnation point of a thin aerofoil
,”
J. Fluid Mech.
798
,
436
456
.
9.
Bechara
,
W.
,
Bailly
,
C.
,
Lafon
,
P.
, and
Candel
,
S. M.
(
1994
). “
Stochastic approach to noise modeling for free turbulent flows
,”
AIAA J.
32
(
3
),
455
463
.
10.
Brooks
,
T.
(
1981
). “
Trailing edge noise prediction using Amiet's method
,”
J. Sound Vib
77
(
3
),
437
439
.
11.
Christophe
,
J.
(
2011
). “
Application of hybrid methods to high frequency aeroacoustics
,” Ph.D. thesis,
Université Libre de Bruxelles
.
12.
Christophe
,
J.
,
Anthoine
,
J.
, and
Moreau
,
S.
(
2009
). “
Amiet's theory in spanwise-varying flow conditions
,”
AIAA J.
47
,
788
790
.
13.
de Santana
,
L. D.
,
Schram
,
C.
, and
Desmet
,
W.
(
2015
). “
Airfoil noise prediction from 2D3C PIV data
,” in
21st AIAA/CEAS Aeroacoustics Conference
,
22–26 June
,
Dallas, TX
, No. 2203.
14.
Devenport
,
W. J.
,
Staubs
,
J. K.
, and
Glegg
,
S. A.
(
2010
). “
Sound radiation from real airfoils in turbulence
,”
J. Sound Vib.
329
(
17
),
3470
3483
.
15.
Dogan
,
E.
,
Hanson
,
R.
, and
Ganapathisubramani
,
B.
(
2016
). “
Interactions of large-scale free-stream turbulence with turbulent boundary layers
,”
J. Fluid Mech.
802
,
79
107
.
16.
Filotas
,
L.
(
1969
). “
Response of an infinite wing to an oblique sinusoidal gust: A generalization of Sears' problem
,”
NASA Spec. Publ.
207
,
231
.
17.
Glegg
,
S. A.
, and
Devenport
,
W. J.
(
2010
). “
Panel methods for airfoils in turbulent flow
,”
J. Sound Vib.
329
(
18
),
3709
3720
.
18.
Hunt
,
J.
(
1973
). “
A theory of turbulent flow round two-dimensional bluff bodies
,”
J. Fluid Mech.
61
(
4
),
625
706
.
19.
Hutcheson
,
F. V.
,
Brooks
,
T. F.
, and
Stead
,
D. J.
(
2012
). “
Measurement of the noise resulting from the interaction of turbulence with a lifting surface
,”
Int. J. Aeroacoust.
11
(
5-6
),
675
700
.
20.
Jiang
,
C.
,
Chang
,
M.
, and
Liu
,
Y.
(
1994
). “
The effect of turbulence ingestion on propeller broadband forces
,”
Naval Hydrodynamics, 19th Symposium
,
Seoul, Korea
,
23–28 August 1992
.
21.
Karimi
,
M.
,
Croaker
,
P.
,
Maxit
,
L.
,
Robin
,
O.
,
Skvortsov
,
A.
,
Marburg
,
S.
, and
Kessissoglou
,
N.
(
2020
). “
A hybrid numerical approach to predict the vibrational responses of panels excited by a turbulent boundary layer
,”
J. Fluids Struct.
92
,
102814
.
22.
Karimi
,
M.
,
Croaker
,
P.
,
Skvortsov
,
A.
,
Moreau
,
D.
, and
Kessissoglou
,
N.
(
2019a
). “
Numerical prediction of turbulent boundary layer noise from a sharp-edged flat plate
,”
Int. J. Numer. Methods Fluids
90
,
522
543
.
23.
Karimi
,
M.
,
Maxit
,
L.
,
Croaker
,
P.
,
Robin
,
O.
,
Skvortsov
,
A.
,
Marburg
,
S.
,
Atalla
,
N.
, and
Kessissoglou
,
N.
(
2019b
). “
Analytical and numerical prediction of acoustic radiation from a panel under turbulent boundary layer excitation
,”
J. Sound Vib.
479
,
115372
.
24.
Kraichnan
,
R. H.
(
1970
). “
Diffusion by a random velocity field
,”
Phys. Fluids
13
(
1
),
22
31
.
25.
Lysak
,
P. D.
(
2001
). “
A model for the broadband unsteady forces in a marine propulsor due to inflow turbulence
,” Ph.D. thesis,
Pennsylvania State University
.
26.
Mathis
,
R.
,
Hutchins
,
N.
, and
Marusic
,
I.
(
2009
). “
Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers
,”
J. Fluid Mech.
628
,
311
337
.
27.
Maxit
,
L.
(
2016
). “
Simulation of the pressure field beneath a turbulent boundary layer using realizations of uncorrelated wall plane waves
,”
J. Acoust. Soc. Am.
140
(
2
),
1268
1285
.
28.
Mish
,
P. F.
(
2001
). “
Mean loading and turbulence scale effects on the surface pressure fluctuations occurring on a NACA0015 airfoil immersed in grid generated turbulence
,” Ph.D. thesis,
Virginia Tech
.
29.
Mish
,
P. F.
, and
Devenport
,
W. J.
(
2003
). “
An experimental investigation of unsteady surface pressure on an airfoil in turbulence
,” final report to NASA Langley under Grant No. NAG-1-2272.
30.
Mish
,
P. F.
, and
Devenport
,
W. J.
(
2006a
). “
An experimental investigation of unsteady surface pressure on an airfoil in turbulence—Part 1: Effects of mean loading
,”
J. Sound Vib.
296
(
3
),
417
446
.
31.
Mish
,
P. F.
, and
Devenport
,
W. J.
(
2006b
). “
An experimental investigation of unsteady surface pressure on an airfoil in turbulence—Part 2: Sources and prediction of mean loading effects
,”
J. Sound Vib.
296
(
3
),
447
460
.
32.
Moreau
,
S.
,
Christopher
,
J.
, and
Roger
,
M.
(
2008
). “
Les of the trailing-edge flow and noise of a NACA0012 airfoil near stall
,” in
Proceedings of the Summer Program
, pp.
317
329
.
33.
Moreau
,
S.
, and
Roger
,
M.
(
2007
). “
Competing broadband noise mechanisms in low-speed axial fans
,”
AIAA J.
45
(
1
),
48
57
.
34.
Paterson
,
R.
, and
Amiet
,
R.
(
1976
). “
Acoustic radiation and surface pressure characteristics of an airfoil due to incident turbulence
,”
3rd Aeroacoustics Conference
, Palo Alto, California, 20–23 July, No. 76-571.
35.
Roger
,
M.
, and
Moreau
,
S.
(
2010
). “
Extensions and limitations of analytical airfoil broadband noise models
,”
Int. J. Aeroacoust.
9
(
3
),
273
305
.
36.
Santana
,
L. D.
,
Christophe
,
J.
,
Schram
,
C.
, and
Desmet
,
W.
(
2016
). “
A rapid distortion theory modified turbulence spectra for semi-analytical airfoil noise prediction
,”
J. Sound Vib.
383
,
349
363
.
You do not currently have access to this content.