The noise attenuation properties of an acoustic liner consisting of Helmholtz resonators with extended necks (HRENs) are investigated. An optimal liner constructed by 16 inhomogeneous HRENs is designed to be effective in sound absorption in a prescribed frequency range from 700 to 1000 Hz. Its quasi-perfect absorption capability (average absorption coefficient above 0.9) is validated by measurements and simulations. The resonance frequencies of the individual resonators in the designed liner are just located within the effective absorption bandwidth, indicating the overlapping phenomenon of absorption peaks. In addition, the liner maintains a thin thickness, about 1/25th with respect to the longest operating wavelengths. To assess the acoustic performance of the designed liner in the presence of mean flow, experimental investigations are performed in a flow tube. Results show a near flat transmission loss is attained in the target frequency range by the designed liner. Additionally, the impedance of the uniform HREN-based liner is extracted at flow condition. In all, the inhomogeneous HREN-based liner is featured by the thin thickness and the excellent wide-band noise attenuation property. These features make the designed liner an promising solution for noise attenuation in both static and flow conditions.

1.
J.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
, 2nd ed. (
John Wiley & Sons
,
New York
,
2009
).
2.
D.-Y.
Maa
, “
Potential of microperforated panel absorber
,”
J. Acoust. Soc. Am.
104
(
5
),
2861
2866
(
1998
).
3.
A. H.
Nayfeh
,
J. E.
Kaiser
, and
D. P.
Telionis
, “
Acoustics of aircraft engine-duct systems
,
” AIAA J.
13
(
2
),
130
153
(
1975
).
4.
R.
Motsinger
and
R.
Kraft
, “
Design and performance of duct acoustic treatment
,” NASA Technical Reports, NASA, Washington, DC (
1991
).
5.
J.
Yu
and
E.
Chien
, “
Folding cavity acoustic liner for combustion noise reduction
,” in
Proceedings of the 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference)
, Cambridge, MA (May 8–10,
2006
), p.
2681
.
6.
R.
Sugimoto
,
P.
Murray
, and
R. J.
Astley
, “
Folded cavity liners for turbofan engine intakes
,” in
Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference)
, Colorado Springs, CO (June 4–6,
2012
), p.
2291
.
7.
K.
Knobloch
,
L.
Enghardt
, and
F.
Bake
, “
Helmholtz resonator liner with flexible walls
,” in
Proceedings of the 2018 AIAA/CEAS Aeroacoustics Conference
, Atlanta, GA (June 25–29,
2018
), p.
4102
.
8.
M. G.
Jones
,
W. R.
Watson
,
D. M.
Nark
, and
B. M.
Howerton
, “
Evaluation of a variable-impedance ceramic matrix composite acoustic liner
,”
AIAA Paper
No. 2014-3352 (
2014
).
9.
M. G.
Jones
,
W. R.
Watson
,
D. M.
Nark
, and
B. M.
Howerton
, “
Evaluation of variable-depth liner configurations for increased broadband noise reduction
,”
AIAA Paper
No. 2015-2697 (
2015
).
10.
M. G.
Jones
,
W. R.
Watson
,
D. M.
Nark
,
N. H.
Schiller
, and
J. C.
Born
, “
Optimization of variable-depth liner configurations for increased broadband noise reduction
,”
AIAA Paper
No. 2016-2783 (
2016
).
11.
A. T.
Chambers
,
J. M.
Manimala
, and
M. G.
Jones
, “
Design and optimization of 3D folded-core acoustic liners for enhanced low-frequency performance
,”
AIAA J.
58
(
1
),
206
218
(
2020
).
12.
H.
Ruiz
,
P.
Cobo
, and
F.
Jacobsen
, “
Optimization of multiple-layer microperforated panels by simulated annealing
,”
Appl. Acoust.
72
(
10
),
772
776
(
2011
).
13.
C.
Wang
and
L.
Huang
, “
On the acoustic properties of parallel arrangement of multiple micro-perforated panel absorbers with different cavity depths
,”
J. Acoust. Soc. Am.
130
(
1
),
208
218
(
2011
).
14.
G.
Ma
and
P.
Sheng
, “
Acoustic metamaterials: From local resonances to broad horizons
,”
Sci. Adv.
2
(
2
),
e1501595
(
2016
).
15.
Z.
Yang
,
J.
Mei
,
M.
Yang
,
N.
Chan
, and
P.
Sheng
, “
Membrane-type acoustic metamaterial with negative dynamic mass
,”
Phys. Rev. Lett.
101
(
20
),
204301
(
2008
).
16.
J.
Mei
,
G.
Ma
,
M.
Yang
,
Z.
Yang
,
W.
Wen
, and
P.
Sheng
, “
Dark acoustic metamaterials as super absorbers for low-frequency sound
,”
Nat. Commun.
3
(
1
),
756
(
2012
).
17.
L.
Zigoneanu
,
B.-I.
Popa
, and
S. A.
Cummer
, “
Three-dimensional broadband omnidirectional acoustic ground cloak
,”
Nat. Mater.
13
(
4
),
352
355
(
2014
).
18.
X.
Cai
,
Q.
Guo
,
G.
Hu
, and
J.
Yang
, “
Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators
,”
Appl. Phys. Lett.
105
(
12
),
121901
(
2014
).
19.
Y.
Li
and
B. M.
Assouar
, “
Acoustic metasurface-based perfect absorber with deep subwavelength thickness
,”
Appl. Phys. Lett.
108
(
6
),
063502
(
2016
).
20.
M.
Yang
,
C.
Meng
,
C.
Fu
,
Y.
Li
,
Z.
Yang
, and
P.
Sheng
, “
Subwavelength total acoustic absorption with degenerate resonators
,”
Appl. Phys. Lett.
107
(
10
),
104104
(
2015
).
21.
M.
Yang
and
P.
Sheng
, “
Sound absorption structures: From porous media to acoustic metamaterials
,”
Ann. Rev. Mater. Res.
47
,
83
114
(
2017
).
22.
Z.
Yang
,
H.
Dai
,
N.
Chan
,
G.
Ma
, and
P.
Sheng
, “
Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime
,”
Appl. Phys. Lett.
96
(
4
),
041906
(
2010
).
23.
G.
Ma
,
M.
Yang
,
S.
Xiao
,
Z.
Yang
, and
P.
Sheng
, “
Acoustic metasurface with hybrid resonances
,”
Nat. Mater.
13
(
9
),
873
878
(
2014
).
24.
M.
Yang
,
S.
Chen
,
C.
Fu
, and
P.
Sheng
, “
Optimal sound-absorbing structures
,”
Mater. Hor.
4
(
4
),
673
680
(
2017
).
25.
C.
Zhang
and
X.
Hu
, “
Three-dimensional single-port labyrinthine acoustic metamaterial: Perfect absorption with large bandwidth and tunability
,”
Phys. Rev. Appl.
6
(
6
),
064025
(
2016
).
26.
M.
Jones
,
M.
Tracy
,
W.
Watson
, and
T.
Parrott
, “
Effects of liner geometry on acoustic impedance
,” in
Proceedings of the 8th AIAA/CEAS Aeroacoustics Conference & Exhibit
, Breckenridge, CO (June 17–19,
2002
), p.
2446
.
27.
M.
Jones
,
W.
Watson
, and
T.
Parrott
, “
Benchmark data for evaluation of aeroacoustic propagation codes with grazing flow
,” in
Proceedings of the 11th AIAA/CEAS Aeroacoustics Conference
, Monterey, CA (May 23–25,
2005
), p.
2853
.
28.
O.
Léon
,
F.
Méry
,
E.
Piot
, and
C.
Conte
, “
Near-wall aerodynamic response of an acoustic liner to harmonic excitation with grazing flow
,”
Exp. Fluids
60
(
9
),
144
(
2019
).
29.
S.
Busse
,
C.
Richter
,
F.
Thiele
,
C.
Heuwinkel
,
L.
Enghardt
,
I.
Röhle
,
U.
Michel
,
P.
Ferrante
, and
A.
Scofano
, “
Impedance deduction based on insertion loss measurements of liners under grazing flow conditions
,” in Proceedings of the
14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference)
, Vancouver, Canada (May 5–7,
2008
), p.
3014
.
30.
S.
Allam
and
M.
Åbom
, “
A new type of muffler based on microperforated tubes
,”
J. Vib. Acoust.
133
(
3
),
031005
(
2011
).
31.
D. L.
Sutliff
and
M. G.
Jones
, “
Low-speed fan noise attenuation from a foam-metal liner
,”
J. Aircr.
46
(
4
),
1381
1394
(
2009
).
32.
F.
Mery
,
D.
Sebbane
,
R.
Roncen
,
E.
Piot
, and
F.
Simon
, “
Experimental impedance assessment of innovative liner under shear grazing flow
,” in
Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference
, Delft, the Netherlands (May 20–23,
2019
), p.
2517
.
33.
M. C.
Brown
and
M. G.
Jones
, “
Evaluation of variable facesheet liner configurations for broadband noise reduction
,” in
Proceedings of the AIAA Aviation 2020 Forum
(June 15–19,
2020
), p.
2616
.
34.
J.
Guo
,
X.
Zhang
,
Y.
Fang
, and
R.
Fattah
, “
Manipulating reflected acoustic wave via Helmholtz resonators with varying-length extended necks
,”
J. Appl. Phys.
124
(
10
),
104902
(
2018
).
35.
S.
Huang
,
X.
Fang
,
X.
Wang
,
B.
Assouar
,
Q.
Cheng
, and
Y.
Li
, “
Acoustic perfect absorbers via spiral metasurfaces with embedded apertures
,”
Appl. Phys. Lett.
113
(
23
),
233501
(
2018
).
36.
F.
Simon
, “
Long elastic open neck acoustic resonator for low frequency absorption
,”
J. Sound Vib.
421
,
1
16
(
2018
).
37.
A.
Selamet
and
Z.
Ji
, “
Circular asymmetric Helmholtz resonators
,”
J. Acoust. Soc. Am.
107
(
5
),
2360
2369
(
2000
).
38.
A.
Selamet
and
I.
Lee
, “
Helmholtz resonator with extended neck
,”
J. Acoust. Soc. Am.
113
(
4
),
1975
1985
(
2003
).
39.
M. R.
Stinson
, “
The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape
,”
J. Acoust. Soc. Am.
89
(
2
),
550
558
(
1991
).
40.
F.
Karal
, “
The analogous acoustical impedance for discontinuities and constrictions of circular cross section
,”
J. Acoust. Soc. Am.
25
(
2
),
327
334
(
1953
).
41.
Z.
Congyun
and
H.
Qibai
, “
A method for calculating the absorption coefficient of a multi-layer absorbent using the electro-acoustic analogy
,”
Appl. Acoust.
66
(
7
),
879
887
(
2005
).
42.
R.
Eberhart
and
J.
Kennedy
, “
A new optimizer using particle swarm theory
,” in
Proceedings of MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science
, Nagoya, Japan (October 4–6,
1995
), pp.
39
43
.
43.
M.
Clerc
and
J.
Kennedy
, “
The particle swarm-explosion, stability, and convergence in a multidimensional complex space
,”
IEEE Trans. Evol. Comput.
6
(
1
),
58
73
(
2002
).
44.
ISO 10534-2
:
Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedances Tubes—Part 2: Transfer-Function Method
(
ISO, Geneva
,
Switzerland
,
1998
).
45.
C. K.
Tam
and
K. A.
Kurbatskii
, “
Microfluid dynamics and acoustics of resonant liners
,”
AIAA J.
38
(
8
),
1331
1339
(
2000
).
46.
X.
Peng
,
J.
Ji
, and
Y.
Jing
, “
Composite honeycomb metasurface panel for broadband sound absorption
,”
J. Acoust. Soc. Am.
144
(
4
),
EL255
EL261
(
2018
).
47.
A.
Spillere
,
J. A.
Cordioli
, and
H.
Boden
, “
On the effect of boundary conditions on impedance eduction results
,” in
Proceedings of the 23rd AIAA/CEAS Aeroacoustics Conference
, Denver, CO (June 5–9,
2017
), p.
3185
.
48.
T.
Wu
and
G.
Wan
, “
Muffler performance studies using a direct mixed-body boundary element method and a three-point method for evaluating transmission loss
,”
J. Vib. Acoust.
118
,
479
484
(
1996
).
49.
X.
Zhang
and
L.
Cheng
, “
Acoustic impedance of micro-perforated panels in a grazing flow
,”
J. Acoust. Soc. Am.
145
(
4
),
2461
2469
(
2019
).
50.
W.
Watson
,
M.
Jones
, and
T.
Parrott
, “
A quasi-3-d theory for impedance eduction in uniform grazing flow
,” in
Proceedings of the 11th AIAA/CEAS Aeroacoustics Conference
, Monterey, CA (May 23–25,
2005
), p.
2848
.
51.
M.
Jones
,
W.
Watson
, and
D.
Nark
, “
Effects of flow profile on educed acoustic liner impedance
,” in
Proceedings of the 16th AIAA/CEAS Aeroacoustics Conference
, Stockholm, Sweden (June 7–9,
2010
), p.
3763
.
52.
X.
Jing
,
S.
Peng
, and
X.
Sun
, “
A straightforward method for wall impedance eduction in a flow duct
,”
J. Acoust. Soc. Am.
124
(
1
),
227
234
(
2008
).
53.
T.
Elnady
,
H.
Bodén
, and
B.
Elhadidi
, “
Validation of an inverse semi-analytical technique to educe liner impedance
,”
AIAA J.
47
(
12
),
2836
2844
(
2009
).
54.
L.
de Santana
,
W.
De Roeck
,
W.
Desmet
, and
P.
Ferrante
, “
Two-port indirect acoustic impedance eduction in presence of grazing flows
,” in
Proceedings of the 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference)
, Portland, OR (June 5–8,
2011
), p.
2868
.
55.
M.
Myers
, “
On the acoustic boundary condition in the presence of flow
,”
J. Sound Vib.
71
(
3
),
429
434
(
1980
).
56.
C. K.
Tam
,
N. N.
Pastouchenko
,
M. G.
Jones
, and
W. R.
Watson
, “
Experimental validation of numerical simulations for an acoustic liner in grazing flow: Self-noise and added drag
,”
J. Sound Vib.
333
(
13
),
2831
2854
(
2014
).
57.
M.
Howe
,
M.
Scott
, and
S.
Sipcic
, “
The influence of tangential mean flow on the Rayleigh conductivity of an aperture
,”
Proc. R. Soc. Lond. A
452
(
1953
),
2303
2317
(
1996
).
58.
X.
Jing
,
X.
Sun
,
J.
Wu
, and
K.
Meng
, “
The effects of grazing flow on the acoustic behavior of orifices
,” in
Proceedings of the 7th AIAA/CEAS Aeroacoustics Conference and Exhibit
, Maastricht, the Netherlands (May 28–30,
2001
), p.
2160
.
You do not currently have access to this content.