While source localization and seabed classification are often approached separately, the convolutional neural networks (CNNs) in this paper simultaneously predict seabed type, source depth and speed, and the closest point of approach. Different CNN architectures are applied to mid-frequency tonal levels from a moving source recorded on a 16-channel vertical line array (VLA). After training each CNN on synthetic data, a statistical representation of predictions on test cases is presented. The performance of a single regression-based CNN is compared to a multitask CNN in which regression is used for the source parameters and classification for the seabed type. The impact of water sound speed profile and seabed variations on the predictions is evaluated using simulated test cases. Environmental mismatch between the training and testing data has a negative impact on source depth estimates, while the remaining labels are estimated tolerably well but with a bias towards shorter ranges. Similar results are found for data measured on two VLAs during Seabed Characterization Experiment 2017. This work shows the superiority of multitask learning and the potential for using a CNN to localize an acoustic source and detect the surficial seabed properties from mid-frequency sounds.

1.
M.
Siderius
,
P. L.
Nielsen
,
J.
Sellschopp
,
M.
Snellen
, and
D.
Simons
, “
Experimental study of geo-acoustic inversion uncertainty due to ocean sound-speed fluctuations
,”
J. Acoust. Soc. Am.
110
(
2
),
769
781
(
2001
).
2.
C.-F.
Huang
,
P.
Gerstoft
, and
W. S.
Hodgkiss
, “
Effect of ocean sound speed uncertainty on matched-field geoacoustic inversion
,”
J. Acoust. Soc. Am.
123
(
6
),
EL162
EL168
(
2008
).
3.
S. E.
Dosso
and
J.
Dettmer
, “
Bayesian matched-field geoacoustic inversion
,”
Inv. Probl.
27
(
5
),
055009
(
2011
).
4.
D. F.
Van Komen
,
T. B.
Neilsen
,
K.
Howarth
,
D. P.
Knobles
, and
P. H.
Dahl
, “
Seabed and range estimation of impulsive time series using a convolutional neural network
,”
J. Acoust. Soc. Am.
147
(
5
),
EL403
EL408
(
2020
).
5.
P. S.
Wilson
,
D. P.
Knobles
, and
T. B.
Neilsen
, “
Guest editorial an overview of the seabed characterization experiment
,”
IEEE J. Oceanic Eng.
45
(
1
),
1
13
(
2020
).
6.
A. B.
Baggeroer
,
W. A.
Kuperman
, and
H.
Schmidt
, “
Matched field processing: Source localization in correlated noise as an optimum parameter estimation problem
,”
J. Acoust. Soc. Am.
83
(
2
),
571
587
(
1988
).
7.
E. K.
Westwood
, “
Broadband matched–field source localization
,”
J. Acoust. Soc. Am.
91
(
5
),
2777
2789
(
1992
).
8.
A.
Tolstoy
,
Matched Field Processing for Underwater Acoustics
(
World Scientific
,
Singapore
,
1993
).
9.
M. B.
Porter
and
A.
Tolstoy
, “
The matched field processing benchmark problems
,”
J. Comput. Acoust.
02
(
03
),
161
185
(
1994
).
10.
E. K.
Westwood
and
D. P.
Knobles
, “
Source track localization via multipath correlation matching
,”
J. Acoust. Soc. Am.
102
(
5
),
2645
2654
(
1997
).
11.
M. S.
Ballard
, “
Estimation of source range using horizontal multipath in continental shelf environments
,”
J. Acoust. Soc. Am.
134
(
4
),
EL340
EL344
(
2013
).
12.
I.
Zorych
and
Z.-H.
Michalopoulou
, “
Particle filtering for dispersion curve tracking in ocean acoustics
,”
J. Acoust. Soc. Am.
124
(
2
),
EL45
EL50
(
2008
).
13.
S. E.
Dosso
and
M. J.
Wilmut
, “
Bayesian focalization: Quantifying source localization with environmental uncertainty
,”
J. Acoust. Soc. Am.
121
(
5
),
2567
2574
(
2007
).
14.
J.
Dettmer
,
S. E.
Dosso
, and
C. W.
Holland
, “
Trans-dimensional geoacoustic inversion
,”
J. Acoust. Soc. Am.
128
(
6
),
3393
3405
(
2010
).
15.
M. D.
Collins
,
W. A.
Kuperman
, and
H.
Schmidt
, “
Nonlinear inversion for ocean–bottom properties
,”
J. Acoust. Soc. Am.
92
(
5
),
2770
2783
(
1992
).
16.
P.
Gerstoft
, “
Inversion of seismoacoustic data using genetic algorithms and a posteriori probability distributions
,”
J. Acoust. Soc. Am.
95
(
2
),
770
782
(
1994
).
17.
M. R.
Fallat
,
P. L.
Nielsen
, and
S. E.
Dosso
, “
Hybrid geoacoustic inversion of broadband Mediterranean Sea data
,”
J. Acoust. Soc. Am.
107
(
4
),
1967
1977
(
2000
).
18.
T. B.
Neilsen
and
E. K.
Westwood
, “
Extraction of acoustic normal mode depth functions using vertical line array data
,”
J. Acoust. Soc. Am.
111
(
2
),
748
756
(
2002
).
19.
J. W.
Choi
and
P. H.
Dahl
, “
Mid-to-high-frequency bottom loss in the East China Sea
,”
IEEE J. Oceanic Eng.
29
(
4
),
980
987
(
2004
).
20.
C. W.
Holland
and
S. E.
Dosso
, “
Mid frequency shallow water fine-grained sediment attenuation measurements
,”
J. Acoust. Soc. Am.
134
(
1
),
131
143
(
2013
).
21.
J.
Yang
,
D. R.
Jackson
, and
D.
Tang
, “
Mid-frequency geoacoustic inversion using bottom loss data from the Shallow Water 2006 Experiment
,”
J. Acoust. Soc. Am.
131
(
2
),
1711
1721
(
2012
).
22.
Z.-H.
Michalopoulou
and
U.
Ghosh-Dastidar
, “
Tabu for matched-field source localization and geoacoustic inversion
,”
J. Acoust. Soc. Am.
115
(
1
),
135
145
(
2004
).
23.
T. B.
Neilsen
, “
An iterative implementation of rotated coordinates for inverse problems
,”
J. Acoust. Soc. Am.
113
(
5
),
2574
2586
(
2003
).
24.
M. J.
Bianco
,
P.
Gerstoft
,
J.
Traer
,
E.
Ozanich
,
M. A.
Roch
,
S.
Gannot
, and
C.-A.
Deledalle
, “
Machine learning in acoustics: Theory and applications
,”
J. Acoust. Soc. Am.
146
(
5
),
3590
3628
(
2019
).
25.
B. Z.
Steinberg
,
M. J.
Beran
,
S. H.
Chin
, and
J. H.
Howard
, Jr.
, “
A neural network approach to source localization
,”
J. Acoust. Soc. Am.
90
(
4
),
2081
2090
(
1991
).
26.
L.
Houégnigan
,
P.
Safari
,
C.
Nadeu
,
M.
van der Schaar
, and
M.
André
, “
A novel approach to real-time range estimation of underwater acoustic sources using supervised machine learning
,” in
OCEANS 2017-Aberdeen
,
IEEE
(
2017
), pp.
1
5
.
27.
H.
Niu
,
E.
Ozanich
, and
P.
Gerstoft
, “
Ship localization in Santa Barbara Channel using machine learning classifiers
,”
J. Acoust. Soc. Am.
142
(
5
),
EL455
EL460
(
2017
).
28.
H.
Niu
,
E.
Reeves
, and
P.
Gerstoft
, “
Source localization in an ocean waveguide using supervised machine learning
,”
J. Acoust. Soc. Am.
142
(
3
),
1176
1188
(
2017
).
29.
R.
Lefort
,
G.
Real
, and
A.
Drémeau
, “
Direct regressions for underwater acoustic source localization in fluctuating oceans
,”
J. Appl. Acoust.
116
,
303
310
(
2017
).
30.
Z.
Huang
,
J.
Xu
,
Z.
Gong
,
H.
Wang
, and
Y.
Yan
, “
Source localization using deep neural networks in a shallow water environment
,”
J. Acoust. Soc. Am.
143
(
5
),
2922
2932
(
2018
).
31.
Y.
Wang
and
H.
Peng
, “
Underwater acoustic source localization using generalized regression neural network
,”
J. Acoust. Soc. Am.
143
(
4
),
2321
2331
(
2018
).
32.
E.
Ozanich
,
P.
Gerstoft
, and
H.
Niu
, “
A feedforward neural network for direction-of-arrival estimation
,”
J. Acoust. Soc. Am.
147
(
3
),
2035
2048
(
2020
).
33.
H.
Niu
,
Z.
Gong
,
E.
Ozanich
,
P.
Gerstoft
,
H.
Wang
, and
Z.
Li
, “
Deep-learning source localization using multi-frequency magnitude-only data
,”
J. Acoust. Soc. Am.
146
(
1
),
211
222
(
2019
).
34.
Z.-H.
Michalopoulou
,
D.
Alexandrou
, and
C.
de Moustier
, “
Application of neural and statistical classifiers to the problem of seafloor characterization
,”
IEEE J. Oceanic Eng.
20
(
3
),
190
197
(
1995
).
35.
J.
Benson
,
N. R.
Chapman
, and
A.
Antoniou
, “
Geoacoustic model inversion using artificial neural networks
,”
Inv. Probl.
16
(
6
),
1627
1639
(
2000
).
36.
Y.
Stephan
,
X.
Demoulin
, and
O.
Sarzeaud
, “
Neural direct approaches for geoacoustic inversion
,”
J. Comput. Acoust.
06
,
151
166
(
1998
).
37.
J.
Piccolo
,
G.
Haramuniz
, and
Z.-H.
Michalopoulou
, “
Geoacoustic inversion with generalized additive models
,”
J. Acoustical Soc. America
145
(
6
),
EL463
EL468
(
2019
).
38.
H.
Niu
,
P.
Gerstoft
,
E.
Ozanich
,
Z.
Li
,
R.
Zhang
,
Z.
Gong
, and
H.
Wang
, “
Block sparse Bayesian learning for broadband mode extraction in shallow water from a vertical array
,”
J. Acoust. Soc. Am.
147
,
3729
3739
(
2020
).
39.
C.
Frederick
,
S.
Villar
, and
Z.-H.
Michalopoulou
, “
Seabed classification using physics-based modeling and machine learning
,”
J. Acoust. Soc. Am.
148
(
6
),
859
872
(
2020
).
40.
A.
Kendall
,
Y.
Gal
, and
R.
Cipolla
, “
Multi-task learning using uncertainty to weigh losses for scene geometry and semantics
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, Salt Lake City, UT, 18–22 June 2018, pp.
7482
7491
.
41.
Z.-H.
Michalopoulou
and
P.
Gerstoft
, “
Multipath broadband localization, bathymetry, and sediment inversion
,”
IEEE J. Oceanic Eng.
45
(
1
),
92
102
(
2020
).
42.
E. K.
Westwood
,
C. T.
Tindle
, and
N. R.
Chapman
, “
A normal mode model for acousto–elastic ocean environments
,”
J. Acoust. Soc. Am.
100
(
6
),
3631
3645
(
1996
).
43.
D. P.
Knobles
,
R. A.
Koch
,
L. A.
Thompson
,
K. C.
Focke
, and
P. E.
Eisman
, “
Broadband sound propagation in shallow water and geoacoustic inversion
,”
J. Acoust. Soc. Am.
113
(
1
),
205
222
(
2003
).
44.
D. P.
Knobles
,
P. S.
Wilson
,
J. A.
Goff
,
L.
Wan
,
M. J.
Buckingham
,
J. D.
Chaytor
, and
M.
Badiey
, “
Maximum entropy derived statistics of sound-speed structure in a fine-grained sediment inferred from sparse broadband acoustic measurements on the New England continental shelf
,”
IEEE J. Oceanic Eng.
45
,
161
173
(
2020
).
45.
G. R.
Potty
,
J. H.
Miller
, and
J. F.
Lynch
, “
Inversion for sediment geoacoustic properties at the New England bight
,”
J. Acoust. Soc. Am.
114
(
4
),
1874
1887
(
2003
).
46.
J.-X.
Zhou
,
X.-Z.
Zhang
, and
D. P.
Knobles
, “
Low-frequency geoacoustic model for the effective properties of sandy seabottoms
,”
J. Acoust. Soc. Am.
125
(
5
),
2847
2866
(
2009
).
47.
M. J.
Buckingham
, “
Compressional and shear wave properties of marine sediments: Comparisons between theory and data
,”
J. Acoust. Soc. Am.
117
(
1
),
137
152
(
2005
).
48.
M. J.
Buckingham
, “
On pore-fluid viscosity and the wave properties of saturated granular materials including marine sediments
,”
J. Acoust. Soc. Am.
122
(
3
),
1486
1501
(
2007
).
49.
Y.
LeCun
,
L.
Bottou
,
Y.
Bengio
, and
P.
Haffner
, “
Gradient-based learning applied to document recognition
,”
Proc. IEEE
86
(
11
),
2278
2323
(
1998
).
50.
I.
Goodfellow
,
Y.
Bengio
, and, and
A.
Courville
,
Deep Learning
(
MIT Press
,
Cambridge
,
2016
).
51.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
, and
L.
Antiga
, “
PyTorch: An imperative style, high-performance deep learning library
,” in
Advances in Neural Information Processing Systems
(
2019
), pp.
8024
8035
.
52.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
53.
V.
Nair
and
G. E.
Hinton
, “
Rectified Linear Units Improve Restricted Boltzmann Machines
,” in
Proceedings of the 27th International Conference on Machine Learning (ICML-10)
(
Omnipress
,
Madison, WI
,
2010
). pp.
801
814
.
54.
C. M.
Bishop
,
Neural Networks for Pattern Recognition
(
Clarendon Press
,
Oxford
,
1995
).
55.
Z.
Allen-Zhu
and
Y.
Li
, “
What can ResNet learn efficiently, going beyond kernels?
,” in
33rd Conference on Neural Information Processing Systems
(
2019
), pp.
1
12
.
56.
P.
Abbot
,
S.
Celuzza
,
I.
Dyer
,
B.
Gomes
,
J.
Fulford
,
J.
Lynch
,
G.
Gawarkiewicz
, and
D.
Volak
, “
Acoustic propagation
,”
IEEE J. Oceanic Eng.
26
(
2
),
266
284
(
2001
).
You do not currently have access to this content.