This paper presents a numerical scheme of arbitrary order of accuracy in both space and time, based on the arbitrary high-order derivatives methodology, for transient acoustic simulations. The scheme combines the nodal discontinuous Galerkin method for the spatial discretization and the Taylor series integrator (TSI) for the time integration. The main idea of the TSI is a temporal Taylor series expansion of all unknown acoustic variables in which the time derivatives are replaced by spatial derivatives via the Cauchy-Kovalewski procedure. The computational cost for the time integration is linearly proportional to the order of accuracy. To increase the computational efficiency for simulations involving strongly varying mesh sizes or material properties, a local time-stepping (LTS) algorithm accompanying the arbitrary high-order derivatives discontinuous Galerkin (ADER-DG) scheme, which ensures correct communications between domains with different time step sizes, is proposed. A numerical stability analysis in terms of the maximum allowable time step sizes is performed. Based on numerical convergence analysis, we demonstrate that for nonuniform meshes, a consistent high-order accuracy in space and time is achieved using ADER-DG with LTS. An application to the sound propagation across a transmissive noise barrier validates the potential of the proposed method for practical problems demanding high accuracy.

1.
H. L.
Atkins
and
C.-W.
Shu
, “
Quadrature-free implementation of discontinuous Galerkin method for hyperbolic equations
,”
AIAA J.
36
(
5
),
775
782
(
1998
).
2.
B.
Cockburn
and
C.-W.
Shu
, “
Runge-Kutta discontinuous Galerkin methods for convection-dominated problems
,”
J. Sci. Comput.
16
(
3
),
173
261
(
2001
).
3.
B.
Cockburn
,
G. E.
Karniadakis
, and
C.-W.
Shu
,
Discontinuous Galerkin Methods: Theory, Computation and Applications
(
Springer-Verlag
,
Berlin Heidelberg
,
2000
), Vol.
11
.
4.
J. S.
Hesthaven
and
T.
Warburton
,
Nodal Discontinuous Galerkin Methods: Algorithms, Analysis and Applications
(
Springer
,
New York
,
2007
).
5.
T.
Lähivaara
and
T.
Huttunen
, “
A non-uniform basis order for the discontinuous Galerkin method of the 3D dissipative wave equation with perfectly matched layer
,”
J. Comput. Phys.
229
(
13
),
5144
5160
(
2010
).
6.
L. C.
Wilcox
,
G.
Stadler
,
C.
Burstedde
, and
O.
Ghattas
, “
A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media
,”
J. Comput. Phys.
229
(
24
),
9373
9396
(
2010
).
7.
M.
Kronbichler
,
S.
Schoeder
,
C.
Müller
, and
W. A.
Wall
, “
Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation
,”
Int. J. Numer. Methods Eng.
106
(
9
),
712
739
(
2016
).
8.
N. C.
Nguyen
,
J.
Peraire
, and
B.
Cockburn
, “
High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics
,”
J. Comput. Phys.
230
(
10
),
3695
3718
(
2011
).
9.
F.
Monteghetti
,
D.
Matignon
, and
E.
Piot
, “
Energy analysis and discretization of nonlinear impedance boundary conditions for the time-domain linearized Euler equations
,”
J. Comput. Phys.
375
,
393
426
(
2018
).
10.
H.
Wang
and
M.
Hornikx
, “
Time-domain impedance boundary condition modeling with the discontinuous Galerkin method for room acoustics simulations
,”
J. Acoust. Soc. Am.
147
(
4
),
2534
2546
(
2020
).
11.
H.
Wang
,
J.
Yang
, and
M.
Hornikx
, “
Frequency-dependent transmission boundary condition in the acoustic time-domain nodal discontinuous Galerkin model
,”
Appl. Acoust.
164
,
107280
(
2020
).
12.
A.
Modave
,
A.
St-Cyr
, and
T.
Warburton
, “
GPU performance analysis of a nodal discontinuous Galerkin method for acoustic and elastic models
,”
Comput. Geosci.
91
,
64
76
(
2016
).
13.
S.
Schoeder
,
W.
Wall
, and
M.
Kronbichler
, “
ExWave: A high performance discontinuous Galerkin solver for the acoustic wave equation
,”
SoftwareX
9
,
49
54
(
2019
).
14.
J.
Williamson
, “
Low-storage Runge-Kutta schemes
,”
J. Comput. Phys.
35
(
1
),
48
56
(
1980
).
15.
M. H.
Carpenter
and
C. A.
Kennedy
, “
Fourth-order 2N-storage Runge-Kutta schemes
,” in
NASA-TM-109112
(
1994
).).
16.
F.
Hu
,
M. Y.
Hussaini
, and
J.
Manthey
, “
Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics
,”
J. Comput. Phys.
124
(
1
),
177
191
(
1996
).
17.
D.
Stanescu
and
W.
Habashi
, “
2N-storage low dissipation and dispersion Runge-Kutta schemes for computational acoustics
,”
J. Comput. Phys.
143
(
2
),
674
681
(
1998
).
18.
C.
Bogey
and
C.
Bailly
, “
A family of low dispersive and low dissipative explicit schemes for flow and noise computations
,”
J. Comput. Phys.
194
(
1
),
194
214
(
2004
).
19.
J.
Berland
,
C.
Bogey
, and
C.
Bailly
, “
Low-dissipation and low-dispersion fourth-order Runge–Kutta algorithm
,”
Comput. Fluids
35
(
10
),
1459
1463
(
2006
).
20.
T.
Toulorge
and
W.
Desmet
, “
Optimal Runge-Kutta schemes for discontinuous Galerkin space discretizations applied to wave propagation problems
,”
J. Comput. Phys.
231
(
4
),
2067
2091
(
2012
).
21.
D. A.
Kopriva
and
E.
Jimenez
, “
An assessment of the efficiency of nodal discontinuous Galerkin spectral element methods
,” in
Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws
(
Springer
,
Berlin, Heidelberg
,
2013
), pp.
223
235
.
22.
A.
Kanevsky
,
M. H.
Carpenter
,
D.
Gottlieb
, and
J. S.
Hesthaven
, “
Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes
,”
J. Comput. Phys.
225
(
2
),
1753
1781
(
2007
).
23.
V.
Dolean
,
H.
Fahs
,
L.
Fezoui
, and
S.
Lanteri
, “
Locally implicit discontinuous Galerkin method for time domain electromagnetics
,”
J. Comput. Phys.
229
(
2
),
512
526
(
2010
).
24.
S.
Descombes
,
S.
Lanteri
, and
L.
Moya
, “
Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell's equations
,”
J. Sci. Comput.
56
(
1
),
190
218
(
2013
).
25.
M.
Hochbruck
and
A.
Ostermann
, “
Exponential multistep methods of Adams-type
,”
BIT Numer. Math.
51
(
4
),
889
908
(
2011
).
26.
H.
Wang
,
L.
Xu
,
B.
Li
,
S.
Descombes
, and
S.
Lanteri
, “
A new family of exponential-based high-order DGTD methods for modeling 3-D transient multiscale electromagnetic problems
,”
IEEE Trans. Antennas Propag.
65
(
11
),
5960
5974
(
2017
).
27.
C. W.
Gear
and
D.
Wells
, “
Multirate linear multistep methods
,”
BIT Numer. Math.
24
(
4
),
484
502
(
1984
).
28.
M.
Günther
,
A.
Kvaernø
, and
P.
Rentrop
, “
Multirate partitioned Runge-Kutta methods
,”
BIT Numer. Math.
41
(
3
),
504
514
(
2001
).
29.
V.
Savcenco
,
W.
Hundsdorfer
, and
J.
Verwer
, “
A multirate time stepping strategy for stiff ordinary differential equations
,”
BIT Numer. Math.
47
(
1
),
137
155
(
2007
).
30.
M. J.
Berger
and
J.
Oliger
, “
Adaptive mesh refinement for hyperbolic partial differential equations
,”
J. Comput. Phys.
53
(
3
),
484
512
(
1984
).
31.
S.
Piperno
, “
Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems
,”
ESAIM: Math. Modell. Numer. Anal.
40
(
5
),
815
841
(
2006
).
32.
E.
Montseny
,
S.
Pernet
,
X.
Ferrières
, and
G.
Cohen
, “
Dissipative terms and local time-stepping improvements in a spatial high order discontinuous Galerkin scheme for the time-domain Maxwell's equations
,”
J. Comput. Phys.
227
(
14
),
6795
6820
(
2008
).
33.
J.
Diaz
and
M. J.
Grote
, “
Energy conserving explicit local time stepping for second-order wave equations
,”
SIAM J. Sci. Comput.
31
(
3
),
1985
2014
(
2009
).
34.
J.
Diaz
and
M. J.
Grote
, “
Multi-level explicit local time-stepping methods for second-order wave equations
,”
Comput. Methods Appl. Mech. Eng.
291
,
240
265
(
2015
).
35.
M. J.
Grote
,
M.
Mehlin
, and
T.
Mitkova
, “
Runge-Kutta-based explicit local time-stepping methods for wave propagation
,”
SIAM J. Sci. Comput.
37
(
2
),
A747
A775
(
2015
).
36.
M.
Almquist
and
M.
Mehlin
, “
Multilevel local time-stepping methods of Runge-Kutta-type for wave equations
,”
SIAM J. Sci. Comput.
39
(
5
),
A2020
A2048
(
2017
).
37.
C. J.
Trahan
and
C.
Dawson
, “
Local time-stepping in Runge-Kutta discontinuous Galerkin finite element methods applied to the shallow-water equations
,”
Comput. Methods Appl. Mech. Eng.
217-220
,
139
152
(
2012
).
38.
L.
Liu
,
X.
Li
, and
F. Q.
Hu
, “
Nonuniform time-step Runge-Kutta discontinuous Galerkin method for computational aeroacoustics
,”
J. Comput. Phys.
229
(
19
),
6874
6897
(
2010
).
39.
C.
Dawson
,
C. J.
Trahan
,
E. J.
Kubatko
, and
J. J.
Westerink
, “
A parallel local timestepping Runge-Kutta discontinuous Galerkin method with applications to coastal ocean modeling
,”
Comput. Methods Appl. Mech. Eng.
259
,
154
165
(
2013
).
40.
L.
Krivodonova
, “
An efficient local time-stepping scheme for solution of nonlinear conservation laws
,”
J. Comput. Phys.
229
(
22
),
8537
8551
(
2010
).
41.
M. J.
Grote
and
T.
Mitkova
, “
High-order explicit local time-stepping methods for damped wave equations
,”
J. Comput. Appl. Math.
239
,
270
289
(
2013
).
42.
L.
Angulo
,
J.
Alvarez
,
F. L.
Teixeira
,
M. F.
Pantoja
, and
S. G.
Garcia
, “
Causal-path local time-stepping in the discontinuous Galerkin method for Maxwell's equations
,”
J. Comput. Phys.
256
,
678
695
(
2014
).
43.
A.
Taube
,
M.
Dumbser
,
C.-D.
Munz
, and
R.
Schneider
, “
A high-order discontinuous Galerkin method with time-accurate local time stepping for the Maxwell equations
,”
Int. J. Numer. Modell.: Electron. Networks, Devices Fields
22
(
1
),
77
103
(
2009
).
44.
M.
Käser
and
M.
Dumbser
, “
An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—I. The two-dimensional isotropic case with external source terms
,”
Geophys. J. Int.
166
(
2
),
855
877
(
2006
).
45.
M.
Dumbser
,
M.
Käser
, and
E. F.
Toro
, “
An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—V. Local time stepping and p-adaptivity
,”
Geophys. J. Int.
171
(
2
),
695
717
(
2007
).
46.
S.
Schoeder
,
M.
Kronbichler
, and
W. A.
Wall
, “
Arbitrary high-order explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation
,”
J. Sci. Comput.
76
(
2
),
969
1006
(
2018
).
47.
M.
Käser
,
M.
Dumbser
,
J.
De La Puente
, and
H.
Igel
, “
An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—III. Viscoelastic attenuation
,”
Geophys. J. Int.
168
(
1
),
224
242
(
2007
).
48.
S.
Schomann
,
N.
Godel
,
T.
Warburton
, and
M.
Clemens
, “
Local timestepping techniques using Taylor expansion for modeling electromagnetic wave propagation with discontinuous Galerkin-FEM
,”
IEEE Trans. Magn.
46
(
8
),
3504
3507
(
2010
).
49.
H.
Qi
,
X.
Wang
,
J.
Zhang
, and
J.
Wang
, “
An ADER discontinuous Galerkin method with local time-stepping for transient electromagnetics
,”
Comput. Phys. Commun.
229
,
106
115
(
2018
).
50.
H.
Wang
,
I.
Sihar
,
R. P.
Muñoz
, and
M.
Hornikx
, “
Room acoustics modelling in the time-domain with the nodal discontinuous Galerkin method
,”
J. Acoust. Soc. Am.
145
(
4
),
2650
2663
(
2019
).
51.
J. S.
Hesthaven
and
C.-H.
Teng
, “
Stable spectral methods on tetrahedral elements
,”
SIAM J. Sci. Comput.
21
(
6
),
2352
2380
(
2000
).
52.
F.
Hu
and
H.
Atkins
, “
Two-dimensional wave analysis of the discontinuous Galerkin method with non-uniform grids and boundary conditions
,” in
8th AIAA/CEAS Aeroacoustics Conference and Exhibit
(
2002
), p.
2514
.
53.
M.
Ainsworth
, “
Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods
,”
J. Comput. Phys.
198
(
1
),
106
130
(
2004
).
54.
M.
Toyoda
and
J.
Motooka
, “
Prediction of permeable thin absorbers using the finite-difference time-domain method
,”
J. Acoust. Soc. Am.
143
(
5
),
2870
2877
(
2018
).
55.
M.
Toyoda
and
S.
Ishikawa
, “
Frequency-dependent absorption and transmission boundary for the finite-difference time-domain method
,”
Appl. Acoust.
145
,
159
166
(
2019
).
56.
H.
Ju
and
K.-Y.
Fung
, “
Time-domain simulation of acoustic sources over an impedance plane
,”
J. Comput. Acoust.
10
(
03
),
311
329
(
2002
).
57.
B.
Cotté
,
P.
Blanc-Benon
,
C.
Bogey
, and
F.
Poisson
, “
Time-domain impedance boundary conditions for simulations of outdoor sound propagation
,”
AIAA J.
47
(
10
),
2391
2403
(
2009
).
58.
D.
Dragna
,
P.
Blanc-Benon
, and
F.
Poisson
, “
Time-domain solver in curvilinear coordinates for outdoor sound propagation over complex terrain
,”
J. Acoust. Soc. Am.
133
(
6
),
3751
3763
(
2013
).
59.
R. M.
Joseph
,
S. C.
Hagness
, and
A.
Taflove
, “
Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses
,”
Opt. Lett.
16
(
18
),
1412
1414
(
1991
).
60.
D.
Dragna
,
P.
Pineau
, and
P.
Blanc-Benon
, “
A generalized recursive convolution method for time-domain propagation in porous media
,”
J. Acoust. Soc. Am.
138
(
2
),
1030
1042
(
2015
).
61.
J. C.
Butcher
,
The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods
(
Wiley-Interscience
,
New York
,
1987
).
62.
S. C.
Reddy
and
L. N.
Trefethen
, “
Stability of the method of lines
,”
Numerische Mathematik
62
(
1
),
235
267
(
1992
).
63.
H. O.
Kreiss
and
L.
Wu
, “
On the stability definition of difference approximations for the initial boundary value problem
,”
Appl. Numer. Math.
12
(
1-3
),
213
227
(
1993
).
64.
L.
Krivodonova
and
R.
Qin
, “
An analysis of the spectrum of the discontinuous Galerkin method
,”
Appl. Numer. Math.
64
,
1
18
(
2013
).
65.
Y.
Özyörük
and
L. N.
Long
, “
A time-domain implementation of surface acoustic impedance condition with and without flow
,”
J. Comput. Acoust.
05
(
03
),
277
296
(
1997
).
66.
D.
Lafarge
,
P.
Lemarinier
,
J. F.
Allard
, and
V.
Tarnow
, “
Dynamic compressibility of air in porous structures at audible frequencies
,”
J. Acoust. Soc. Am.
102
(
4
),
1995
2006
(
1997
).
67.
C.
Geuzaine
and
J.-F.
Remacle
, “
Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities
,”
Int. J. Numer. Methods Eng.
79
(
11
),
1309
1331
(
2009
).
68.
N.
Chalmers
and
L.
Krivodonova
, “
A robust CFL condition for the discontinuous Galerkin method on triangular meshes
,”
J. Comput. Phys.
403
,
109095
(
2020
).
69.
T.
Toulorge
and
W.
Desmet
, “
CFL conditions for Runge-Kutta discontinuous Galerkin methods on triangular grids
,”
J. Comput. Phys.
230
(
12
),
4657
4678
(
2011
).
You do not currently have access to this content.