The influence of non-smooth trachea walls on phonation onset and offset pressures and the fundamental frequency of oscillation were experimentally investigated for three different synthetic vocal fold models. Three models of the trachea were compared: a cylindrical tube (smooth walls) and wavy-walled tubes with ripple depths of 1 and 2 mm. Threshold pressures for the onset and offset of phonation were measured at the lower and upper ends of each trachea tube. All measurements were performed both with and without a supraglottal resonator. While the fundamental frequency was not affected by non-smooth trachea walls, the phonation onset and offset pressures measured right below the glottis decreased with an increasing ripple depth of the trachea walls (up to 20% for 2 mm ripples). This effect was independent from the type of glottis model and the presence of a supraglottal resonator. The pressures at the lower end of the trachea and the average volume velocities showed a tendency to decrease with an increasing ripple depth of the trachea walls but to a much smaller extent. These results indicate that the subglottal geometry and the flow conditions in the trachea can substantially affect the oscillation of synthetic vocal folds.

1.
Alipour
,
F.
, and
Vigmostad
,
S.
(
2012
). “
Measurement of vocal folds elastic properties for continuum modeling
,”
J. Voice
26
(
6
),
816.e21
816.e29
.
2.
Birkholz
,
P.
(
2019
). “
MeasureTransferFunction [software]
,” available at https://www.vocaltractlab.de/index.php?page=measuretransferfunction-download (Last viewed 1/13/21).
3.
Birkholz
,
P.
,
Gabriel
,
F.
,
Kürbis
,
S.
, and
Echternach
,
M.
(
2019a
). “
How the peak glottal area affects linear predictive coding-based formant estimates of vowels
,”
J. Acoust. Soc. Am.
146
(
1
),
223
232
.
4.
Birkholz
,
P.
,
Kürbis
,
S.
,
Stone
,
S.
,
Häsner
,
P.
,
Blandin
,
R.
, and
Fleischer
,
M.
(
2020
). “
Printable 3D vocal tract shapes from MRI data and their acoustic and aerodynamic properties
,”
Sci. Data
7
(
1
),
1
16
.
5.
Birkholz
,
P.
,
Stone
,
S.
, and
Kürbis
,
S.
(
2019b
). “
Comparison of different methods for the voiced excitation of physical vocal tract models
,” in
Study Texts in Speech Communication: Electronic Speech Signal Processing
, edited by
P.
Birkholz
and
S.
Stone
(
TUDpress
,
Dresden
), pp.
84
94
.
6.
Boersma
,
P.
, and
Weenik
,
D.
(
2017
). “
Praat: Doing phonetics by computer (version 6.1.09) [computer program]
,” http://www.praat.org/ (Last viewed 1/13/21).
7.
Bouvet
,
A.
,
Tokuda
,
I.
,
Pelorson
,
X.
, and
Van Hirtum
,
A.
(
2021
). “
Imaging of auto-oscillating vocal folds replicas with left–right level difference due to angular asymmetry
,”
Biomed. Signal Process. Control
63
,
102154
.
8.
Breatnach
,
E.
,
Abbott
,
G. C.
, and
Fraser
,
R. G.
(
1984
). “
Dimensions of the normal human trachea
,”
Am. J. Roentgenol.
142
(
5
),
903
906
.
9.
Burks
,
G.
,
Singh
,
M.
,
De Vita
,
R.
,
Johnson
,
B.
, and
Leonessa
,
A.
(
2020
). “
Effect of mechanical properties on the dynamics of self-oscillating synthetic vocal folds
,”
J. Dyn. Syst., Meas., Control
143
(
2
),
021001
.
10.
Chen
,
L.-J.
,
Zañartu
,
M.
,
Cook
,
D.
, and
Mongeau
,
L.
(
2008
). “
Effects of acoustic loading on the self-oscillations of a synthetic model of the vocal folds
,” in
Proc. of the Ninth International Conference on Flow-Induced Vibrations
, Vol.
30
, pp.
1
6
.
11.
Chhetri
,
D. K.
,
Zhang
,
Z.
, and
Neubauer
,
J.
(
2011
). “
Measurement of Young's modulus of vocal folds by indentation
,”
J. Voice
25
(
1
),
1
7
.
12.
Choi
,
J.
,
Tawhai
,
M. H.
,
Hoffman
,
E. A.
, and
Lin
,
C.-L.
(
2009
). “
On intra- and intersubject variabilities of airflow in the human lungs
,”
Phys. Fluids
21
(
10
),
101901
.
13.
Dalmont
,
J.-P.
(
2001
). “
Acoustic impedance measurement, Part I: A review
,”
J. Sound Vib.
243
(
3
),
427
439
.
14.
Dekker
,
E.
(
1961
). “
Transition between laminar and turbulent flow in human trachea
,”
J. Appl. Physiol.
16
(
6
),
1060
1064
.
15.
Farina
,
A.
(
2000
). “
Simultaneous measurement of impulse response and distortion with a swept-sine technique
,” in
Audio Engineering Society Convention 108
.
16.
Finkelhor
,
B. K.
,
Titze
,
I. R.
, and
Durham
,
P. L.
(
1988
). “
The effect of viscosity changes in the vocal folds on the range of oscillation
,”
J. Voice
1
(
4
),
320
325
.
17.
Fischer
,
H.
(
1952
). “
Beitrag zur funktionellen Struktur der Trachea” (“Contribution to the functional structure of the trachea
”),
Anatomischer Anzeiger (Anat. J.)
99
,
277
286
.
18.
Fukui
,
K.
,
Ishikawa
,
Y.
,
Shintaku
,
E.
,
Honda
,
M.
, and
Takanishi
,
A.
(
2012
). “
Production of various vocal cord vibrations using a mechanical model for an anthropomorphic talking robot
,”
Adv. Rob.
26
(
1-2
),
105
120
.
19.
Gabriel
,
F.
,
Häsner
,
P.
,
Dohmen
,
E.
,
Borin
,
D.
, and
Birkholz
,
P.
(
2019
). “
Stickiness and surface waviness of two-layer silicone rubber structures for synthetic vocal folds
,” in
Study Texts in Speech Communication: Electronic Speech Signal Processing
, edited by
P.
Birkholz
and
S.
Stone
(
TUDpress
,
Dresden
), pp.
221
230
.
20.
Ho
,
J. C.
,
Zañartu
,
M.
, and
Wodicka
,
G. R.
(
2011
). “
An anatomically based, time-domain acoustic model of the subglottal system for speech production
,”
J. Acoust. Soc. Am.
129
(
3
),
1531
1547
.
21.
Honda
,
M.
,
Fukui
,
K.
,
Ogane
,
R.
, and
Takanishi
,
A.
(
2011
). “
Pathological voice production by mechanical vocal cord model
,” in
Proc. of the 9th International Seminar on Speech Production
, pp.
49
56
.
22.
Ishizaka
,
K.
,
Matsudaira
,
M.
, and
Kaneko
,
T.
(
1976
). “
Input acoustic-impedance measurement of the subglottal system
,”
J. Acoust. Soc. Am.
60
(
1
),
190
197
.
23.
Kamel
,
K. S.
,
Lau
,
G.
, and
Stringer
,
M. D.
(
2009
). “
In vivo and in vitro morphometry of the human trachea
,”
Clin. Anat.
22
(
5
),
571
579
.
24.
Kniesburges
,
S.
,
Birk
,
V.
,
Lodermeyer
,
A.
,
Schützenberger
,
A.
,
Bohr
,
C.
, and
Becker
,
S.
(
2017
). “
Effect of the ventricular folds in a synthetic larynx model
,”
J. Biomech.
55
,
128
133
.
25.
Ladefoged
,
P.
(
1988
). “
Discussion of phonetics: A note on some terms for phonation types
,” in
Vocal Physiology: Voice Production
, edited by
O.
Fujimura
(
Raven
,
New York
), pp.
373
375
.
26.
McPhail
,
M. J.
,
Campo
,
E. T.
, and
Krane
,
M. H.
(
2019
). “
Aeroacoustic source characterization in a physical model of phonation
,”
J. Acoust. Soc. Am.
146
(
2
),
1230
1238
.
27.
Mendelsohn
,
A. H.
, and
Zhang
,
Z.
(
2011
). “
Phonation threshold pressure and onset frequency in a two-layer physical model of the vocal folds
,”
J. Acoust. Soc. Am.
130
(
5
),
2961
2968
.
28.
Migimatsu
,
K.
, and
Tokuda
,
I. T.
(
2019
). “
Experimental study on nonlinear source–filter interaction using synthetic vocal fold models
,”
J. Acoust. Soc. Am.
146
(
2
),
983
997
.
29.
Murray
,
P. R.
(
2011
). “
Flow-induced responses of normal, bowed, and augmented synthetic vocal fold models
,” Masters thesis (
Brigham Young University
,
Provo, UT
).
30.
Murray
,
P. R.
, and
Thomson
,
S. L.
(
2011
). “
Synthetic, multi-layer, self-oscillating vocal fold model fabrication
,”
J. Visualized Exp.
58
,
e3498
.
31.
Murray
,
P. R.
, and
Thomson
,
S. L.
(
2012
). “
Vibratory responses of synthetic, self-oscillating vocal fold models
,”
J. Acoust. Soc. Am.
132
(
5
),
3428
3438
.
32.
Nishimura
,
T.
,
Bian
,
Y.
,
Matsumoto
,
Y.
, and
Kunitsugu
,
K.
(
2003
). “
Fluid flow and mass transfer characteristics in a sinusoidal wavy-walled tube at moderate Reynolds numbers for steady flow
,”
Heat Mass Transfer
39
(
3
),
239
248
.
33.
Nowak
,
N.
,
Kakade
,
P. P.
, and
Annapragada
,
A. V.
(
2003
). “
Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs
,”
Ann. Biomed. Eng.
31
(
4
),
374
390
.
34.
Pickup
,
B. A.
, and
Thomson
,
S. L.
(
2009
). “
Influence of asymmetric stiffness on the structural and aerodynamic response of synthetic vocal fold models
,”
J. Biomech.
42
(
14
),
2219
2225
.
35.
Pickup
,
B. A.
, and
Thomson
,
S. L.
(
2010
). “
Flow-induced vibratory response of idealized versus magnetic resonance imaging-based synthetic vocal fold models
,”
J. Acoust. Soc. Am.
128
(
3
),
EL124
EL129
.
36.
Premakumar
,
Y.
,
Griffin
,
M.
, and
Szarko
,
M.
(
2018
). “
Morphometric characterisation of human tracheas: Focus on cartilaginous ring variation
,”
BMC Res. Notes.
11
(
1
),
32
.
37.
Scherer
,
R. C.
,
Shinwari
,
D.
,
De Witt
,
K. J.
,
Zhang
,
C.
,
Kucinschi
,
B. R.
, and
Afjeh
,
A. A.
(
2001
). “
Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees
,”
J. Acoust. Soc. Am.
109
(
4
),
1616
1630
.
38.
Shaw
,
S. M.
,
Thomson
,
S. L.
,
Dromey
,
C.
, and
Smith
,
S.
(
2012
). “
Frequency response of synthetic vocal fold models with linear and nonlinear material properties
,”
J. Speech, Lang., Hear. Res.
55
(
5
),
1395
1406
.
39.
Singh
,
R.
, and
Schary
,
M.
(
1978
). “
Acoustic impedance measurement using sine sweep excitation and known volume velocity technique
,”
J. Acoust. Soc. Am.
64
(
4
),
995
1003
.
40.
Stevens
,
K. N.
(
1998
).
Acoustic Phonetics
(
The MIT Press
,
Cambridge, MA
).
41.
Thomson
,
S. L.
,
Mongeau
,
L.
, and
Frankel
,
S. H.
(
2005
). “
Aerodynamic transfer of energy to the vocal folds
,”
J. Acoust. Soc. Am.
118
(
3
),
1689
1700
.
42.
Titze
,
I. R.
(
1988
). “
The physics of small-amplitude oscillation of the vocal folds
,”
J. Acoust. Soc. Am.
83
(
4
),
1536
1552
.
43.
Titze
,
I. R.
(
2018
). “
Where has all the power gone? Energy production and loss in vocalization
,”
Speech Commun.
101
,
26
33
.
44.
Titze
,
I. R.
,
Schmidt
,
S. S.
, and
Titze
,
M. R.
(
1995
). “
Phonation threshold pressure in a physical model of the vocal fold mucosa
,”
J. Acoust. Soc. Am.
97
(
5
),
3080
3084
.
45.
Weibel
,
E. R.
(
1963
).
Morphometry of the Human Lung
(
Springer
,
Berlin
).
46.
Xuan
,
Y.
, and
Zhang
,
Z.
(
2014
). “
Influence of embedded fibers and an epithelium layer on the glottal closure pattern in a physical vocal fold model
,”
J. Speech, Lang., Hear. Res.
57
(
2
),
416
425
.
47.
Zhang
,
Z.
(
2016
). “
Mechanics of human voice production and control
,”
J. Acoust. Soc. Am.
140
(
4
),
2614
2635
.
48.
Zhang
,
Z.
,
Neubauer
,
J.
, and
Berry
,
D. A.
(
2006
). “
The influence of subglottal acoustics on laboratory models of phonation
,”
J. Acoust. Soc. Am.
120
(
3
),
1558
1569
.
49.
Zhang
,
Z.
,
Neubauer
,
J.
, and
Berry
,
D. A.
(
2009
). “
Influence of vocal fold stiffness and acoustic loading on flow-induced vibration of a single-layer vocal fold model
,”
J. Sound Vib.
322
(
1-2
),
299
313
.

Supplementary Material

You do not currently have access to this content.