Cochlear implants (CIs) and hearing aids (HAs) are advanced assistive hearing devices that perform sound processing to achieve acoustic to acoustic/electrical stimulation, thus enabling the prospects for hearing restoration and rehabilitation. Since commercial CIs/HAs are typically constrained by manufacturer design/production constraints, it is necessary for researchers to use research platforms (RPs) to advance algorithms and conduct investigational studies with CI/HA subjects. While previous CI/HA research platforms exist, no study has explored establishing a formal evaluation protocol for the operational safety and reliability of RPs. This study proposes a two-phase analysis and evaluation paradigm for RPs. In the acoustic phase 1 step, a signal processing acoustic space is explored in order to present a sampled set of audio input content to explore the safety of the resulting output electric/acoustic stimulation. In the parameter phase 2 step, the configurable space for realizable electrical stimulation pulses is determined, and overall stimulation reliability and safety are evaluated. The proposed protocol is applied and demonstrated using Costakis Cochlear Implant Mobile. Assessment protocol observations, results, and additional best practices for subsampling of the acoustic and parameter test spaces are discussed. The proposed analysis-evaluation protocol establishes a viable framework for assessing RP operational safety and reliability. Guidelines for adapting the proposed protocol to address variability in RP configuration due to experimental factors such as custom algorithms, stimulation techniques, and/or individualization are also considered.

1.
Advanced Bionics LLC
(
2020
). https://advancedbionics.com/us/en/home.html (Last viewed June 21, 2020).
2.
Advanced Bionics LLC, Cochlear Americas, and MED-EL Corp
. (
2011
).
Minimum Speech Test Battery (MSTB) for Adult Cochlear Implant Users
(
Advanced Bionics LLC, Cochlear Americas, MED-EL Corp.
).
3.
Agnew
,
W. F.
,
Yuen
,
T. G. H.
,
McCreery
,
D. B.
, and
Bullara
,
L. A.
(
1986
). “
Histopathologic evaluation of prolonged intracortical electrical stimulation
,”
Exp. Neurol.
92
(
1
),
162
185
.
4.
Ali
,
H.
,
Ammula
,
S.
,
Saba
,
J.
, and
Hansen
,
J. H. L.
(
2017
). “
CCi mobile platform for cochlear implant and hearing aid research
,” in
Proceedings of the 1st Conference on Challenges in Hearing Aid Assistive Technology
, August 19, Stockholm, Sweden, pp. 21–23.
5.
Ali
,
H.
,
Lobo
,
A. P.
, and
Loizou
,
P. C.
(
2013
). “
Design and evaluation of a personal digital assistant-based research platform for cochlear implants
,”
IEEE Trans. Biomed. Eng.
60
(
11
),
3060
3073
.
6.
Backus
,
B.
,
Adiloğlu
,
K.
, and
Herzke
,
T.
(
2015
). “
A binaural CI research platform for Oticon Medical SP/XP implants enabling ITD/ILD and variable rate processing
,”
Trends Hear.
19
,
2331216515618655
.
7.
Buchman
,
C. A.
,
Gifford
,
R. H.
,
Haynes
,
D. S.
,
Lenarz
,
T.
,
O'Donoghue
,
G.
,
Adunka
,
O.
,
Biever
,
A.
,
Briggs
,
R. J.
,
Carlson
,
M. L.
,
Dai
,
P.
, and
Driscoll
,
C. L.
(
2020
). “
Unilateral cochlear implants for severe, profound, or moderate sloping to profound bilateral sensorineural hearing loss: A systematic review and consensus statements
,”
JAMA Otolaryngol. Head Neck Surg.
146
(
10
),
942
953
.
8.
Chasin
,
M.
(
2012
). “
Music and hearing aids—An introduction
,”
Trends Amplif.
16
(
3
),
136
139
.
9.
Chatterjee
,
M.
,
Fu
,
Q. J.
, and
Shannon
,
R. V.
(
2000
). “
Effects of phase duration and electrode separation on loudness growth in cochlear implant listeners
,”
J. Acoust. Soc. Am.
107
(
3
),
1637
1644
.
10.
Chatterjee
,
M.
, and
Zwislocki
,
J. J.
(
1998
). “
Cochlear mechanisms of frequency and intensity coding. II. Dynamic range and the code for loudness
,”
Hear. Res.
124
(
1–2
),
170
181
.
11.
Claussen
,
A. D.
,
Quevedo
,
R. V.
,
Mostaert
,
B.
,
Kirk
,
J. R.
,
Dueck
,
W. F.
, and
Hansen
,
M. R.
(
2019
). “
A mouse model of cochlear implantation with chronic electric stimulation
,”
PLoS One
14
(
4
),
e0215407
.
12.
Cochlear Corp.
(
2020
). https://www.cochlear.com/us/en/home (Last viewed June 21, 2020).
13.
Cochlear Corp.
(
2006
).
NIC v2 Software Interface Specification E11318RD
(
Cochlear Corp
.,
Sydney, Australia
).
14.
Cooper
,
W. B.
,
Tobey
,
E.
, and
Loizou
,
P. C.
(
2008
). “
Music perception by cochlear implant and normal hearing listeners as measured by the Montreal Battery for Evaluation of Amusia
,”
Ear Hear.
29
(
4
),
618
626
.
15.
CRC and HearWorks
(
2003a
). “
SPEAR3 3rd generation speech processor for electrical and acoustic research
,” in
Product Brief
(
University of Melbourne
,
Victoria, Australia
).
16.
CRC and HearWorks
(
2003b
). “
SPEAR3 speech processing system
,” in
Product Brief
(
University of
Melbourne, Victoria, Australia
).
17.
Crew
,
J. D.
, and
Galvin
,
J. J.
 III
(
2012
). “
Channel interaction limits melodic pitch perception in simulated cochlear implants
,”
J. Acoust. Soc. Am.
132
(
5
),
EL429
EL435
.
18.
Damen
,
G. W.
,
Beynon
,
A. J.
,
Krabbe
,
P. F.
,
Mulder
,
J. J.
, and
Mylanus
,
E. A.
(
2007
). “
Cochlear implantation and quality of life in postlingually deaf adults: Long-term follow-up
,”
Otolaryngol. Head Neck Surg.
136
(
4
),
597
604
.
19.
Deller
,
J. R.
,
Proakis
,
J. G.
, and
Hansen
,
J. H.
(
2000
).
Discrete-Time Processing of Speech Signals
, Institute of Electrical and Electronics Engineers (
Macmillan
,
New York
).
20.
Dudley
,
W. H.
(
1940
). “
vocoder--Electrical re-creation of speech
,”
J. Soc. Motion Pict. Eng.
34
(
3
),
272
278
.
21.
Eddington
,
D. K.
,
Dobelle
,
W. H.
,
Brackmann
,
D. E.
,
Mladevosky
,
M. G.
, and
Parkin
,
J. L.
(
1978
). “
Auditory prosthesis research with multiple channel intracochlear stimulation in man
,”
Ann. Otol. Rhinol. Laryngol.
87
,
1
39
.
22.
Fant
,
G.
(
1970
).
Acoustic Theory of Speech Production
(
Mouton & Co
.,
The Hague
).
23.
Flanagan
,
J. L.
, and
Golden
,
R. M.
(
1966
). “
Phase vocoder
,”
Bell Syst. Tech. J.
45
(
9
),
1493
1509
.
24.
Flynn
,
M. C.
,
Dowell
,
R. C.
, and
Clark
,
G. M.
(
1998
). “
Aided speech recognition abilities of adults with a severe or severe-to-profound hearing loss
,”
J. Speech Lang. Hear. Res.
41
(
2
),
285
299
.
25.
Francart
,
T.
,
Van Wieringen
,
A.
, and
Wouters
,
J.
(
2008
). “
APEX 3: A multi-purpose test platform for auditory psychophysical experiments
,”
J. Neurosci. Methods
172
(
2
),
283
293
.
26.
Fu
,
Q. J.
, and
Shannon
,
R. V.
(
2000
). “
Effect of stimulation rate on phoneme recognition by Nucleus-22 cochlear implant listeners
,”
J. Acoust. Soc. Am.
107
(
1
),
589
597
.
27.
Gfeller
,
K.
,
Woodworth
,
G.
,
Robin
,
D. A.
,
Witt
,
S.
, and
Knutson
,
J. F.
(
1997
). “
Perception of rhythmic and sequential pitch patterns by normally hearing adults and adult cochlear implant users
,”
Ear Hear.
18
(
3
),
252
260
.
28.
Green
,
R. A.
,
Matteucci
,
P. B.
,
Dodds
,
C. W. D.
,
Palmer
,
J.
,
Dueck
,
W. F.
,
Hassarati
,
R. T.
, and
Suaning
,
G. J.
(
2014
). “
Laser patterning of platinum electrodes for safe neurostimulation
,”
J. Neural Eng.
11
(
5
),
056017
.
29.
Hansen
,
J. H. L.
,
Ali
,
H.
,
Saba
,
J. N.
,
Charan
,
M. R.
,
Mamun
,
N.
,
Ghosh
,
R.
,
Brueggeman
,
A.
, and
CRSS-CI Lab: Center for Robust Speech Systems – Cochlear Implant Processing Lab
(
2019
). “
CCI-MOBILE: Design and evaluation of a cochlear implant and hearing aid research platform for speech scientists and engineers
,” in
2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)
, May 19–22, Chicago (
Institute of Electrical and Electronics Engineers
,
New York
), pp.
1
4
.
30.
Hinderink
,
J. B.
,
Krabbe
,
P. F.
, and
Van Den Broek
,
P.
(
2000
). “
Development and application of a health-related quality-of-life instrument for adults with cochlear implants: The Nijmegen cochlear implant questionnaire
,”
Otolaryngology--Head Neck Surg.
123
(
6
),
756
765
.
31.
Huang
,
C. Q.
, and
Shepherd
,
R. K.
(
1999
). “
Reduction in excitability of the auditory nerve following electrical stimulation at high stimulus rates. IV. Effects of stimulus intensity
,”
Hearing Res.
132
(
1–2
),
60
68
.
32.
Kąkol
,
K.
, and
Kostek
,
B.
(
2016
). “
A study on signal processing methods applied to hearing aids
,” in
2016 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)
, September 21–23, Poznan, Poland (
Institute of Electrical and Electronics Engineers
,
New York
), pp.
219
224
.
33.
Kiefer
,
J.
,
Hohl
,
S.
,
Stürzebecher
,
E.
,
Pfennigdorff
,
T.
, and
Gstöettner
,
W.
(
2001
). “
Comparison of speech recognition with different speech coding strategies (SPEAK, CIS, and ACE) and their relationship to telemetric measures of compound action potentials in the nucleus CI 24M cochlear implant system
,”
Audiology
40
(
1
),
32
42
.
34.
Knutson
,
J. F.
,
Gantz
,
B. J.
,
Hinrichs
,
J. V.
,
Schartz
,
H. A.
,
Tyler
,
R. S.
, and
Woodworth
,
G.
(
1991
). “
Psychological predictors of audiological outcomes of multichannel cochlear implants: Preliminary findings
,”
Ann. Otol. Rhinol. Laryngol.
100
,
817
822
.
35.
Koch
,
D. B.
,
Osberger
,
M. J.
,
Segel
,
P.
, and
Kessler
,
D.
(
2004
). “
HiResolution and conventional sound processing in the HiResolution bionic ear: Using appropriate outcome measures to assess speech recognition ability
,”
Audiol. Neurotol.
9
(
4
),
214
223
.
36.
Leung
,
R. T.
,
Shivdasani
,
M. N.
,
Nayagam
,
D. A.
, and
Shepherd
,
R. K.
(
2014
). “
In vivo and in vitro comparison of the charge injection capacity of platinum macroelectrodes
,”
IEEE Trans. Biomed. Eng.
62
(
3
),
849
857
.
37.
Litovsky
,
R. Y.
,
Goupell
,
M. J.
,
Kan
,
A.
, and
Landsberger
,
D. M.
(
2017
). “
Use of research interfaces for psychophysical studies with cochlear-implant users
,”
Trends Hear.
21
,
1
15
.
38.
Loizou
,
P. C.
(
1998
). “
Mimicking the human ear
,”
IEEE Signal Process. Mag.
15
(
5
),
101
130
.
39.
Loizou
,
P. C.
(
1999
). “
Signal-processing techniques for cochlear implants
,”
IEEE Eng. Med. Biol. Mag.
18
(
3
),
34
46
.
40.
Loizou
,
P. C.
(
2006
). “
Speech processing in vocoder-centric cochlear implants
,”
Adv. Otorhinolaryngol.
64
,
109
143
.
41.
Looi
,
V.
,
McDermott
,
H.
,
McKay
,
C.
, and
Hickson
,
L.
(
2008a
). “
Music perception of cochlear implant users compared with that of hearing aid users
,”
Ear Hear.
29
(
3
),
421
434
.
42.
Looi
,
V.
,
McDermott
,
H.
,
McKay
,
C.
, and
Hickson
,
L.
(
2008b
). “
The effect of cochlear implantation on music perception by adults with usable pre-operative acoustic hearing
,”
Int. J. Audiol.
47
(
5
),
257
268
.
43.
McCreery
,
D. B.
,
Agnew
,
W. F.
,
Yuen
,
T. G.
, and
Bullara
,
L.
(
1990
). “
Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation
,”
IEEE Trans. Biomed. Eng.
37
(
10
),
996
1001
.
44.
McCreery
,
D. B.
,
Agnew
,
W. F.
,
Yuen
,
T. G. H.
, and
Bullara
,
L. A.
(
1992
). “
Damage in peripheral nerve from continuous electrical stimulation: Comparison of two stimulus waveforms
,”
Med. Biol. Eng. Comput.
30
(
1
),
109
114
.
45.
McCreery
,
D. B.
,
Agnew
,
W. F.
,
Yuen
,
T. G. H.
, and
Bullara
,
L. A.
(
1995
). “
Relationship between stimulus amplitude, stimulus frequency and neural damage during electrical stimulation of sciatic nerve of cat
,”
Med. Biol. Eng. Comput.
33
,
426
429
.
46.
McCreery
,
D. B.
,
Bullara
,
L. A.
, and
Agnew
,
W. F.
(
1986
). “
Neuronal activity evoked by chronically implanted intracortical microelectrodes
,”
Exp. Neurol.
92
(
1
),
147
161
.
47.
McDermott
,
H. J.
,
Mckay
,
C. M.
, and
Vandali
,
A. E.
(
1992
). “
A new portable sound processor for the University of Melbourne/Nucleus Limited multielectrode cochlear implant
,”
J. Acoust. Soc. Am.
91
(
6
),
3367
3371
.
48.
McDermott
,
H. J.
,
Vandali
,
A. E.
,
Van Hoesel
,
R. J.
,
McKay
,
C. M.
,
Harrison
,
J. M.
, and
Cohen
,
L. T.
(
1993
). “
A portable programmable digital sound processor for cochlear implant research
,”
IEEE Trans. Rehabil. Eng.
1
(
2
),
94
100
.
49.
McKay
,
C. M.
, and
Henshall
,
K. R.
(
2003
). “
The perceptual effects of interphase gap duration in cochlear implant stimulation
,”
Hear. Res.
181
(
1–2
),
94
99
.
50.
McKay
,
C. M.
,
Remine
,
M. D.
, and
McDermott
,
H. J.
(
2001
). “
Loudness summation for pulsatile electrical stimulation of the cochlea: Effects of rate, electrode separation, level, and mode of stimulation
,”
J. Acoust. Soc. Am.
110
(
3
),
1514
1524
.
51.
MED-EL
(
2020
). https://www.medel.com/ (Last viewed June 21, 2020).
52.
Mo
,
B.
,
Lindbæk
,
M.
, and
Harris
,
S.
(
2020
). “
Cochlear implants and quality of life: A prospective study,
,”
Ear Hear.
26
(
2
),
186
194
.
53.
Normann
,
R. A.
,
Maynard
,
E. M.
,
Rousche
,
P. J.
, and
Warren
,
D. J.
(
1999
). “
A neural interface for a cortical vision prosthesis
,”
Vis. Res.
39
(
15
),
2577
2587
.
54.
Patrick
,
J. F.
,
Busby
,
P. A.
, and
Gibson
,
P. J.
(
2006
). “
The development of the Nucleus® Freedom™ cochlear implant system
,”
Trends Amplif.
10
(
4
),
175
200
.
55.
Prado-Guitierrez
,
P.
,
Fewster
,
L. M.
,
Heasman
,
J. M.
,
McKay
,
C. M.
, and
Shepherd
,
R. K.
(
2006
). “
Effect of interphase gap and pulse duration on electrically evoked potentials is correlated with auditory nerve survival
,”
Hear. Res.
215
(
1–2
),
47
55
.
56.
Ramekers
,
D.
,
Versnel
,
H.
,
Strahl
,
S. B.
,
Smeets
,
E. M.
,
Klis
,
S. F.
, and
Grolman
,
W.
(
2014
). “
Auditory-nerve responses to varied inter-phase gap and phase duration of the electric pulse stimulus as predictors for neuronal degeneration
,”
J. Assoc. Res. Otolaryngol.
15
(
2
),
187
202
.
57.
Reed
,
C. M.
, and
Delhorne
,
L. A.
(
2005
). “
Reception of environmental sounds through cochlear implants
,”
Ear Hear.
26
(
1
),
48
61
.
58.
Shannon
,
R. V.
(
1983
). “
Multichannel electrical stimulation of the auditory nerve in man. II. Channel interaction
,”
Hear. Res.
12
(
1
),
1
16
.
59.
Shannon
,
R. V.
(
1992
). “
A model of safe levels for electrical stimulation
,”
IEEE Trans. Biomed. Eng.
39
(
4
),
424
426
.
60.
Shannon
,
R. V.
,
Adams
,
D. D.
,
Ferrel
,
R. L.
,
Palumbo
,
R. L.
, and
Grandgenett
,
M.
(
1990
). “
A computer interface for psychophysical and speech research with the Nucleus cochlear implant
,”
J. Acoust. Soc. Am.
87
(
2
),
905
907
.
61.
Shannon
,
R. V.
,
Fu
,
Q. J.
,
Chatterjee
,
M.
,
Galvin
,
J. J.
, III
,
Friesen
,
L.
,
Cruz
,
R.
,
Wygonski
,
J.
, and
Robert
,
M. E.
(
2002
). “
Speech processors for auditory prostheses
,” NIH Quarterly Progress Report, QPR No. 12—Final Report (House Ear Institute, Los Angeles).
62.
Shannon
,
R. V.
,
Zeng
,
F. G.
,
Fu
,
Q. J.
,
Chatterjee
,
M.
,
Wygonski
,
J.
,
Galvin
,
J.
, III
,
Robert
,
M.
, and
Wang
,
X.
(
1999
). “
Speech processors for auditory prostheses
,” NIH Quarterly Progress Report, QPR No. 1 (House Ear Institute, Los Angeles).
63.
Shekar
,
R. C. M. C.
,
Ali
,
H.
, and
Hansen
,
J. H. L.
(
2018
). “
Testing paradigms for assistive hearing devices in diverse acoustic environments
,” in
ISCA Interspeech-2018
, September 2–6, Hyderabad, India, pp.
1686
1690
.
64.
Shepherd
,
R. K.
,
Clark
,
G. M.
, and
Black
,
R. C.
(
1983
). “
Chronic electrical stimulation of the auditory nerve in cats: Physiological and histopathological results
,”
Acta Oto-Laryngol.
95
(Sup399
),
19
31
.
65.
Shokouhi
,
N.
, and
Hansen
,
J. H. L.
(
2017
). “
Teager–Kaiser energy operators for overlapped speech detection
,”
IEEE/ACM Trans. Audio Speech Language Process.
25
(
5
),
1035
1047
.
66.
Shokouhi
,
N.
,
Ziaei
,
A.
,
Sangwan
,
A.
, and
Hansen
,
J. H. L.
(
2015
). “
Robust overlapped speech detection and its application in word-count estimation for Prof-Life-Log data
,” in
2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, April 19–24, South Brisbane, Queensland, Australia (
Institute of Electrical and Electronics Engineers
,
New York
) pp.
4724
4728
.
67.
Skinner
,
M. W.
,
Ketten
,
D. R.
,
Vannier
,
M. W.
,
Gates
,
G. A.
,
Yoffie
,
R. L.
, and
Kalender
,
W. A.
(
1994
). “
Determination of the position of nucleus cochlear implant electrodes in the inner ear
,”
Am. J. Otol.
15
(
5
),
644
651
.
68.
Spitzer
,
J. B.
,
Kessler
,
M. A.
, and
Bromberg
,
B.
(
1992
). “
Longitudinal findings in quality of life and perception of handicap following cochlear implantation
,”
Semin. Hear.
13
(
3
),
260
268
.
69.
Stohl
,
J. S.
,
Throckmorton
,
C. S.
, and
Collins
,
L. M.
(
2008
). “
Developing a flexible SPEAR3-based psychophysical research platform for testing cochlear implant users
,” Technical Report (Duke University, Durham, NC, USA).
70.
Tye-Murray
,
N.
,
Tyler
,
R. S.
,
Woodworth
,
G. G.
, and
Gantz
,
B. J.
(
1992
). “
Performance over time with a Nucleus or Ineraid cochlear implant
,”
Ear Hear.
13
(
3
),
200
209
.
71.
Tyler
,
R. S.
, and
Kelsay
,
D.
(
1990
). “
Advantages and disadvantages reported by some of the better cochlear-implant patients
,”
Am. J. Otol.
11
(
4
),
282
289
.
72.
Tyler
,
R. S.
, and
Lowder
,
M. W.
(
1992
). “
Audiological management and performance of adult cochlear-implant patients
,”
Ear Nose Throat J.
71
(
3
),
117
128
.
73.
University of Innsbruck
(
2001
).
RIB: Research Interface Box System V1.0 Manual
(
University of Innsbruck
,
Innsbruck, Austria
).
74.
Van Immerseel
,
L.
,
Peeters
,
S.
,
Dykmans
,
P.
,
Vanpoucke
,
F.
, and
Bracke
,
P.
(
2005
). “
SPAIDE: A real-time research platform for the Clarion CII/90K cochlear implant
,”
EURASIP J. Adv. Signal Process.
2005
(
18
),
764821
.
75.
Vandali
,
A. E.
,
Sucher
,
C.
,
Tsang
,
D. J.
,
McKay
,
C. M.
,
Chew
,
J. W.
, and
McDermott
,
H. J.
(
2005
). “
Pitch ranking ability of cochlear implant recipients: A comparison of sound-processing strategies
,”
J. Acoust. Soc. Am.
117
(
5
),
3126
3138
.
76.
Walsh
,
S. M.
, and
Leake-Jones
,
P. A.
(
1982
). “
Chronic electrical stimulation of auditory nerve in cat: Physiological and histological results
,”
Hear. Res.
7
(
3
),
281
304
.
77.
Wilson
,
B. S.
, and
Dorman
,
M. F.
(
2008
). “
Cochlear implants: A remarkable past and a brilliant future
,”
Hear. Res.
242
(
1–2
),
3
21
.
78.
Wilson
,
B. S.
,
Finley
,
C. C.
,
Farmer
,
J. C.
, Jr.
,
Lawson
,
D. T.
,
Weber
,
B. A.
,
Wolford
,
R. D.
,
Kenan
,
P. D.
,
White
,
M. W.
,
Merzenich
,
M. M.
, and
Schindler
,
R. A.
(
1988
). “
Comparative studies of speech processing strategies for cochlear implants
,”
Laryngoscope
98
,
1069
1077
.
79.
Wilson
,
B. S.
,
Finley
,
C. C.
,
Lawson
,
D. T.
,
Wolford
,
R. D.
,
Eddington
,
D. K.
, and
Rabinowitz
,
W. M.
(
1991
). “
Better speech recognition with cochlear implants
,”
Nature
352
,
236
238
.
80.
World Health Organization
(
2015
). “1.1 billion people at risk of hearing loss,” http://www.who.int/mediacentre/news/releases/2015/ear-care/en/ (Last viewed July 29, 2019).
81.
Zeng
,
F. G.
(
2008
). “
Role of temporal fine structure in speech perception
,”
J. Acoust. Soc. Am.
123
,
3710
.
82.
Zeng
,
F. G.
, and
Shannon
,
R. V.
(
1994
). “
Loudness-coding mechanisms inferred from electric stimulation of the human auditory system
,”
Science
264
(
5158
),
564
566
.
83.
Zhao
,
F.
,
Stephens
,
S. D. G.
,
Sim
,
S. W.
, and
Meredith
,
R.
(
1997
). “
The use of qualitative questionnaires in patients having and being considered for cochlear implants
,”
Clin. Otolaryngol. Allied Sci.
22
(
3
),
254
259
.
You do not currently have access to this content.