All acoustic sources are of finite spatial extent. In volumetric wave-based simulation approaches (including, e.g., the finite difference time domain method among many others), a direct approach is to represent such continuous source distributions in terms of a collection of point-like sources at grid locations. Such a representation requires interpolation over the grid and leads to common staircasing effects, particularly under rotation or translation of the distribution. In this article, a different representation is shown, based on a spherical harmonic representation of a given distribution. The source itself is decoupled from any particular arrangement of grid points, and is compactly represented as a series of filter responses used to drive a canonical set of source terms, each activating a given spherical harmonic directivity pattern. Such filter responses are derived for a variety of commonly encountered distributions. Simulation results are presented, illustrating various features of such a representation, including convergence, behaviour under rotation, the extension to the time varying case, and differences in computational cost relative to standard grid-based source representations.

1.
L.
Savioja
,
T.
Rinne
, and
T.
Takala
, “
Simulation of room acoustics with a 3-D finite-difference mesh
,” in
Proceedings of the International Computer Music Conference
,
Århus, Denmark
(
1994
), pp.
463
466
.
2.
D.
Botteldooren
, “
Acoustical finite-difference time-domain simulation in a quasi-Cartesian grid
,”
J. Acoust. Soc. Am.
95
(
5
),
2313
2319
(
1994
).
3.
D.
Botteldooren
, “
Finite-difference time-domain simulation of low-frequency room acoustic problems
,”
J. Acoust. Soc. Am.
98
(
6
),
3302
3308
(
1995
).
4.
S.
Bilbao
, “
Modeling of complex geometries and boundary conditions in finite difference/finite volume time domain room acoustics simulation
,”
IEEE Trans. Audio Speech Language Process.
21
(
7
),
1524
1533
(
2013
).
5.
S.
Bilbao
,
B.
Hamilton
,
J.
Botts
, and
L.
Savioja
, “
Finite volume time domain room acoustics simulation under general impedance boundary conditions
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
24
(
1
),
161
173
(
2016
).
6.
T.
Okuzono
,
T.
Yoshida
,
K.
Sakagami
, and
T.
Otsuru
, “
An explicit time-domain finite element method for room acoustics simulations: Comparison of the performance with implicit methods
,”
Appl. Acoust.
104
,
76
84
(
2015
).
7.
F.
Georgiou
and
M.
Hornikx
, “
Incorporating directivity in the Fourier pseudospectral time-domain method using spherical harmonics
,”
J. Acoust. Soc. Am.
140
(
2
),
855
865
(
2016
).
8.
J.
Schneider
,
C.
Wagner
, and
S.
Broschat
, “
Implementation of transparent sources embedded in acoustic finite-difference time domain grids
,”
J. Acoust. Soc. Am.
103
(
1
),
3219
3226
(
1998
).
9.
A.
Celestinos
and
S.
Nielsen
, “
Low-frequency loudspeaker room simulation using finite differences in the time domain part 1: Analysis
,”
J. Audio Eng. Soc.
56
(
10
),
772
786
(
2008
).
10.
J.
Botts
,
A.
Bockman
, and
N.
Xiang
, “
On the selection and implementation of sources for finite-difference methods
,” in
Proceedings of the 20th International Congress on Acoustics
,
Sydney, Australia
(
2010
).
11.
H.
Jeong
and
Y.
Lam
, “
Source implementation to eliminate low-frequency artifacts in finite difference time domain room acoustic simulation
,”
J. Acoust. Soc. Am.
131
(
1
),
258
268
(
2012
).
12.
D.
Murphy
,
A.
Southern
, and
L.
Savioja
, “
Source excitation strategies for obtaining impulse responses in finite difference time domain room acoustics simulation
,”
Appl. Acoust.
82
,
6
14
(
2014
).
13.
J.
Sheaffer
,
M.
van Walstijn
, and
B.
Fazenda
, “
Physical and numerical constraints in source modeling for finite difference simulation of room acoustics
,”
J. Acoust. Soc. Am.
135
(
1
),
251
261
(
2014
).
14.
D.
Buechler
,
D.
Roper
,
C.
Durney
, and
D.
Christensen
, “
Modeling sources in the FDTD formulation and their use in quantifying source and boundary condition errors
,”
IEEE Trans. Microw. Theory Tech.
43
(
4
),
810
814
(
1995
).
15.
R.
Mehra
,
L.
Antani
,
S.
Kim
, and
D.
Manocha
, “
Source and listener directivity for interactive wave-based sound propagation
,”
IEEE Trans. Visual. Comput. Graph.
20
(
4
),
83
94
(
2014
).
16.
J.
Hargreaves
,
L.
Rendell
, and
Y.
Lam
, “
A framework for auralization of boundary element method simulations including source and receiver directivity
,”
J. Acoust. Soc. Am.
145
(
4
),
2625
2637
(
2019
).
17.
A.
Southern
and
D.
Murphy
, “
Low complexity directional sound sources for finite difference time domain room acoustic models
,” in
Proceedings of the 126th Audio Engineering Society Convention
,
Munich, Germany
(
2009
).
18.
J.
Escolano
,
J.
Lopez
, and
B.
Pueo
, “
Directive sources in acoustic discrete-time domain simulations based on directivity diagrams
,”
J. Acoust. Soc. Am.
121
,
EL256
EL262
(
2007
).
19.
H.
Hacihabiboglu
,
B.
Günel
, and
A.
Kondoz
, “
Time-domain simulation of directive sources in 3-d digital waveguide mesh-based acoustical models
,”
IEEE Trans. Audio Speech Lang. Process.
16
(
5
),
934
946
(
2008
).
20.
D.
Takeuchi
,
K.
Yatabe
, and
Y.
Oikawa
, “
Source directivity approximation for finite-difference time-domain simulation by estimating initial value
,”
J. Acoust. Soc. Am.
145
(
4
),
2638
2649
(
2019
).
21.
S.
Bilbao
,
J.
Ahrens
, and
B.
Hamilton
, “
Incorporating source directivity in wave-based virtual acoustics: Time-domain models and fitting to measured data
,”
J. Acoust. Soc. Am.
146
(
4
),
2692
2703
(
2019
).
22.
S.
Bilbao
,
A.
Politis
, and
B.
Hamilton
, “
Local time-domain spherical harmonic spatial encoding for wave-based acoustic simulation
,”
IEEE Sign. Process. Lett.
26
(
4
),
617
621
(
2019
).
23.
I.
Hallaj
and
R.
Cleveland
, “
FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound
,”
J. Acoust. Soc. Am.
105
(
5
),
L7
L12
(
1999
).
24.
E.
Martin
,
Y.
Ling
, and
B.
Treeby
, “
Simulating focused ultrasound transducers using discrete sources on regular Cartesian grids
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
63
(
10
),
1535
1542
(
2016
).
25.
J.
Robertson
,
B.
Cox
,
J.
Jaros
, and
B.
Treeby
, “
Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation
,”
J. Acoust. Soc. Am.
141
(
3
),
1726
1738
(
2017
).
26.
E.
Wise
,
B.
Cox
,
J.
Jaros
, and
B.
Treeby
, “
Representing arbitrary acoustic source and sensor distributions in Fourier collocation methods
,”
J. Acoust. Soc. Am.
146
(
1
),
278
288
(
2019
).
27.
B.
Treeby
,
J.
Budisky
,
E.
Wise
,
J.
Jaros
, and
B.
Cox
, “
Rapid calculation of acoustic fields from arbitrary continuous-wave sources
,”
J. Acoust. Soc. Am.
143
(
1
),
529
537
(
2018
).
28.
R.
Troian
,
D.
Dragna
,
C.
Bailly
, and
M.-A.
Galland
, “
Broadband liner impedance education for multimodal acoustic propagation in the presence of a mean flow
,”
J. Sound Vib.
392
(
1
),
200
216
(
2017
).
29.
E.
Heyman
and
A.
Devaney
, “
Time-dependent multipoles and their application for radiation from volume source distributions
,”
J. Math. Phys.
37
(
2
),
682
692
(
1987
).
30.
P.
Croaker
,
S.
Marburg
,
R.
Kinns
, and
N.
Kessissoglou
, “
Multipole moment preserving condensation of volumetric acoustic sources
,” in
Proceedings of Acoustics 2011
,
Gold Coast, Australia
(
2011
).
31.
A.
Pierce
,
Acoustics: An Introduction to its Physical Principles and Applications
(
Acoustical Society of America
,
Melville, NY
,
1989
), p.
162
.
32.
E.
Williams
,
Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography
(
Academic Press
,
New York
,
1999
), p.
2
.
33.
B.
Rafaely
,
Fundamentals of Spherical Array Processing
(
Springer
,
New York
,
2015
), p.
46
.
34.
J.
Ahrens
,
Analytic Methods of Sound Field Synthesis
(
Springer
,
Heidelberg, Germany
,
2012
), p.
30
.
35.
J.
Ivanic
and
K.
Ruedenberg
, “
Rotation matrices for real spherical harmonics: Direct determination by recursion
,”
J. Phys. Chem.
100
(
15
),
6342
6347
(
1996
).
36.
J.
Tuomela
, “
On the construction of arbitrary order schemes for the many-dimensional wave equation
,”
BIT
36
(
1
),
158
165
(
1996
).
37.
S.
Bilbao
and
B.
Hamilton
, “
Higher-order accurate two-step finite difference schemes for the many dimensional wave equation
,”
J. Comput. Phys.
367
,
134
165
(
2018
).
38.
E.
Wise
,
B.
Cox
, and
B.
Treeby
, “
Staircase-free acoustic sources for grid-based models of wave propagation
,” in
IEEE International Ultrasonics Symposium
,
Washington, D.C.
(
2017
).
39.
S.
Bilbao
and
B.
Hamilton
, “
Directional sources in wave-based acoustic simulation
,”
IEEE Trans. Audio Speech Lang. Process.
27
,
415
428
(
2019
).
40.
J.
Waldén
, “
On the approximation of singular source terms in differential equations
,”
Numer. Meth. Partial Diff. Eq.
15
(
4
),
503
520
(
1999
).
41.
X.
Yang
,
X.
Zhang
,
Z.
Li
, and
G.
He
, “
A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations
,”
J. Comput. Phys.
228
,
7821
7836
(
2009
).
42.
B.
Hosseini
,
N.
Nigam
, and
J.
Stockie
, “
On regularizations of the Dirac delta distribution
,”
J. Comput. Phys.
305
,
423
447
(
2016
).
43.
J.
Saarelma
,
J.
Botts
,
B.
Hamilton
, and
L.
Savioja
, “
Audibility of dispersion error in room acoustic finite-difference time-domain simulation as a function of simulation distance
,”
J. Acoust. Soc. Am.
139
(
4
),
1822
1832
(
2016
).
44.
J.
Meyer
,
T.
Lokki
, and
J.
Ahrens
, “
Identification of virtual receiver array geometries that minimize audibility of numerical dispersion in binaural auralizations of finite difference time domain simulations
,” paper in
149th Audio Engineering Society Convention
,
New York
(
2020
).
You do not currently have access to this content.