Arctic glacial bays are among the loudest natural environments in the ocean, owing to heavy submarine melting, calving, freshwater discharge, and ice–wave interactions. Understanding the coherence and vertical directionality of the ambient sound there can provide insights about the mechanisms behind the ice loss in these regions. It can also provide key information for operating technologies such as sonar, communication, and navigation systems. To study the unexplored sound coherence and vertical directionality in glacial bays, a vertical hydrophone array was deployed, and acoustic measurements were made at four glacier termini in Hornsund Fjord, Spitsbergen, in June and July 2019. The measurements show that the sound generated by melting glacier ice is more dominant in the upper portion of the water column near the glacier terminus. The melt water from the submarine melting and the freshwater discharge from the glacier create a glacially modified water duct near the sea surface. This disrupts the inter-sensor vertical coherence in the channel. However, some coherence across the duct is preserved for sound arising from spatially localized events at low frequencies. Overall, the observations in this study can help improve the understanding of the submarine melting phenomenon in glacial bays.

1.
Arimitsu
,
M. L.
,
Piatt
,
J. F.
, and
Mueter
,
F.
(
2016
). “
Influence of glacier runoff on ecosystem structure in Gulf of Alaska fjords
,”
Mar. Ecol.: Prog. Ser.
560
(
November
),
19
40
.
2.
Benn
,
D. I.
,
Warren
,
C. R.
, and
Mottram
,
R. H.
(
2007
). “
Calving processes and the dynamics of calving glaciers
,”
Earth-Sci. Rev.
82
(
3-4
),
143
179
.
3.
Błaszczyk
,
M.
,
Ignatiuk
,
D.
,
Uszczyk
,
A.
,
Cielecka-Nowak
,
K.
,
Grabiec
,
M.
,
Jania
,
J. A.
,
Moskalik
,
M.
, and
Walczowski
,
W.
(
2019
). “
Freshwater input to the Arctic fjord Hornsund (Svalbard)
,”
Polar Res.
38
(
April
), p.
3506
.
4.
Błaszczyk
,
M.
,
Jania
,
J. A.
, and
Kolondra
,
L.
(
2013
). “
Fluctuations of tidewater glaciers in Hornsund Fjord (Southern Svalbard) since the beginning of the 20th century
,”
Pol. Polar Res.
34
(
4
),
327
352
.
5.
Buckingham
,
M. J.
(
1981
). “
Spatial coherence of wind-generated noise in a shallow ocean channel
,”
J. Acoust. Soc. Am.
70
(
5
),
1412
1420
.
6.
Buckingham
,
M. J.
(
1997
). “
Source depth and the spatial coherence of ambient noise in the ocean
,”
J. Acoust. Soc. Am.
102
(
5
),
2637
2644
.
7.
Burton
,
J. C.
,
Amundson
,
J. M.
,
Cassotto
,
R.
,
Kuo
,
C. C.
, and
Dennin
,
M.
(
2018
). “
Quantifying flow and stress in ice mélange, the world's largest granular material
,”
Proc. Natl. Acad. Sci. U.S.A.
115
(
20
),
5105
5110
.
8.
Cape
,
M. R.
,
Vernet
,
M.
,
Pettit
,
E. C.
,
Wellner
,
J.
,
Truffer
,
M.
,
Akie
,
G.
,
Domack
,
E.
,
Leventer
,
A.
,
Smith
,
C. R.
, and
Huber
,
B. A.
(
2019
). “
Circumpolar deep water impacts glacial meltwater export and coastal biogeochemical cycling along the west Antarctic Peninsula
,”
Front. Mar. Sci.
6
(
MAR
),
1
23
.
9.
Carper
,
S. A.
(
2017
). “
Low frequency active sonar performance in the Arctic Beaufort Lens
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
10.
Collins
,
M. D.
,
Turgut
,
A.
,
Menis
,
R.
, and
Schindall
,
J. A.
(
2019
). “
Acoustic recordings and modeling under seasonally varying sea ice
,”
Sci. Rep.
9
(
1
),
1
11
.
11.
Cox
,
H.
(
1973
). “
Spatial correlation in arbitrary noise fields with application to ambient sea noise
,”
J. Acoust. Soc. Am.
54
(
5
),
1289
1301
.
12.
Cron
,
B. F.
, and
Sherman
,
C. H.
(
1962
). “
Spatial-correlation functions for various noise models
,”
J. Acoust. Soc. Am.
34
(
11
),
1732
1736
.
13.
Deane
,
G. B.
,
Buckingham
,
M. J.
, and
Tindle
,
C. T.
(
1997
). “
Vertical coherence of ambient noise in shallow water overlying a fluid seabed
,”
J. Acoust. Soc. Am.
102
(
6
),
3413
3424
.
14.
Deane
,
G. B.
, and
Glowacki
,
O.
(
2018
). “
The vertical directionality of melt noise from a glacier terminus
,”
J. Acoust. Soc. Am.
143
(
3
),
1833
1833
.
15.
Deane
,
G. B.
,
Glowacki
,
O.
,
Dale Stokes
,
M.
, and
Pettit
,
E.
(
2019
). “
The underwater sounds of glaciers
,”
Acoust. Today
15
(
4
),
12
19
.
16.
Deane
,
G. B.
,
Glowacki
,
O.
,
Tegowski
,
J.
,
Moskalik
,
M.
, and
Blondel
,
P.
(
2014
). “
Directionality of the ambient noise field in an Arctic, glacial bay
,”
J. Acoust. Soc. Am.
136
(
5
),
EL350
EL356
.
17.
Dziak
,
R. P.
,
Bohnenstiehl
,
D. W. R.
,
Stafford
,
K. M.
,
Matsumoto
,
H.
,
Park
,
M.
,
Lee
,
W. S.
,
Fowler
,
M. J.
,
Lau
,
T. K.
,
Haxel
,
J. H.
, and
Mellinger
,
D. K.
(
2015
). “
Sources and levels of ambient ocean sound near the Antarctic Peninsula
,”
PLoS One
10
(
4
),
1
23
.
18.
Earth Resources Observation and Science (EROS) Center
(
2020
). “
USGS EROS Archive—Sentinel-2
,” available at www.usgs.gov/centers/eros/science/usgs-eros-archive-sentinel-2?qt-science_center_objects=0#qt-science_center_objects (Last viewed December 2020).
19.
Freitag
,
L.
,
Ball
,
K.
,
Partan
,
J.
,
Koski
,
P.
, and
Singh
,
S.
(
2016
). “
Long range acoustic communications and navigation in the Arctic
,” in
OCEANS 2015—MTS/IEEE Washington
.
20.
Freitag
,
L.
,
Singh
,
S.
,
Ball
,
K.
,
Johnson
,
T.
,
Giaya
,
D.
,
Muenchow
,
A.
, and
Washam
,
P.
(
2019
). “
Experimental results in acoustic communications under shore-fast Greenland ice
,” in
OCEANS 2019—Marseille
,
IEEE
, pp.
1
6
.
21.
Gautier
,
D. L.
,
Bird
,
K. J.
,
Charpentier
,
R. R.
,
Grantz
,
A.
,
Houseknecht
,
D. W.
,
Klett
,
T. R.
,
Moore
,
T. E.
,
Pitman
,
J. K.
,
Schenk
,
C. J.
,
Schuenemeyer
,
J. H.
,
Sorensen
,
K.
,
Tennyson
,
M. E.
,
Valin
,
Z. C.
, and
Wandrey
,
C. J.
(
2009
). “
Assessment of undiscovered oil and gas in the Arctic
,”
Science
324
(
5931
),
1175
1179
.
22.
Glasser
,
N. F.
(
2011
). “
Polythermal glaciers
,” in
Encyclopedia of Snow, Ice and Glaciers. Encyclopedia of Earth Sciences Series
, edited by
V.
Singh
,
P.
Singh
, and
U.
Haritashya
(
Springer
,
Dordrecht)
, pp.
865
867
.
23.
Glowacki
,
O.
(
2020
). “
Underwater noise from glacier calving: Field observations and pool experiment
,”
J. Acoust. Soc. Am.
148
(
1
),
EL1
EL7
.
24.
Glowacki
,
O.
, and
Deane
,
G. B.
(
2020
). “
Quantifying iceberg calving fluxes with underwater noise
,”
Cryosphere
14
(
3
),
1025
1042
.
25.
Glowacki
,
O.
,
Deane
,
G. B.
, and
Moskalik
,
M.
(
2018
). “
The intensity, directionality, and statistics of underwater noise from melting icebergs
,”
Geophys. Res. Lett.
45
(
9
),
4105
4113
, .
26.
Głowacki
,
O.
,
Deane
,
G. B.
,
Moskalik
,
M.
,
Tȩgowski
,
J.
, and
Blondel
,
P.
(
2015
). “
Two-element acoustic array gives insight into ice-ocean interactions in Hornsund Fjord, Spitsbergen
,”
Pol. Polar Res.
36
(
4
),
355
367
.
27.
Glowacki
,
O.
,
Moskalik
,
M.
, and
Deane
,
G. B.
(
2016
). “
The impact of glacier meltwater on the underwater noise field in a glacial bay
,”
J. Geophys. Res.: Oceans
121
(
12
),
8455
8470
.
28.
Hamilton
,
E. L.
(
1976
). “
Sound attenuation as a function of depth in the sea floor
,”
J. Acoust. Soc. Am.
59
(
3
),
528
535
.
29.
Harrison
,
C. H.
(
1996
). “
Formulas for ambient noise level and coherence
,”
J. Acoust. Soc. Am.
99
(
4
),
2055
2066
.
30.
Hines
,
P. C.
,
Nams
,
D.
,
Deveau
,
T.
,
Kessel
,
R.
,
Hamilton
,
J.
,
Whitt
,
C.
, and
Barclay
,
D. R.
(
2018
). “
Estimating channel capacity and sonar performance in the changing arctic
,”
J. Acoust. Soc. Am.
144
(
3
),
1818
1819
.
31.
Jacobs
,
S. S.
,
Jenkins
,
A.
,
Giulivi
,
C. F.
, and
Dutrieux
,
P.
(
2011
). “
Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf
,”
Nat. Geosci.
4
(
8
),
519
523
.
32.
Jenkins
,
A.
, and
Jacobs
,
S.
(
2008
). “
Circulation and melting beneath George VI ice shelf, Antartica
,”
J. Geophys. Res.: Oceans
113
(
4
),
1
18
, .
33.
Kinda
,
G. B.
,
Simard
,
Y.
,
Gervaise
,
C.
,
Mars
,
J. I.
, and
Fortier
,
L.
(
2013
). “
Under-ice ambient noise in Eastern Beaufort Sea, Canadian Arctic, and its relation to environmental forcing
,”
J. Acoust. Soc. Am.
134
(
1
),
77
87
.
34.
Kinda
,
G. B.
,
Simard
,
Y.
,
Gervaise
,
C.
,
Mars
,
J. I.
, and
Fortier
,
L.
(
2015
). “
Arctic underwater noise transients from sea ice deformation: Characteristics, annual time series, and forcing in Beaufort Sea
,”
J. Acoust. Soc. Am.
138
(
4
),
2034
2045
.
35.
Kuperman
,
W. A.
(
1980
). “
Spatial correlation of surface generated noise in a stratified ocean
,”
J. Acoust. Soc. Am.
67
(
6
),
1988
1996
.
36.
Lewis
,
J. K.
, and
Denner
,
W. W.
(
1988
). “
Higher frequency ambient noise in the Arctic Ocean
,”
J. Acoust. Soc. Am.
84
(
4
),
1444
1455
.
37.
Macpherson
,
J. D.
(
1962
). “
Some under-ice acoustic ambient noise measurements
,”
J. Acoust. Soc. Am.
34
(
8
),
1149
1150
.
38.
Michalopoulou
,
Z. H.
, and
Porter
,
M. B.
(
1996
). “
Matched-field processing for broad-band source localization
,”
IEEE J. Ocean Eng.
21
(
4
),
384
391
.
39.
Miller
,
A. W.
, and
Ruiz
,
G. M.
(
2014
). “
Arctic shipping and marine invaders
,”
Nat. Clim. Change
4
(
6
),
413
416
.
40.
Milne
,
A. R.
, and
Ganton
,
J. H.
(
1964
). “
Ambient noise under Arctic-Sea ice
,”
J. Acoust. Soc. Am.
36
(
5
),
855
863
.
41.
Moffat
,
C.
, and
Meredith
,
M.
(
2018
). “
Shelf-ocean exchange and hydrography west of the Antarctic Peninsula: A review
,”
Philos. Trans. R. Soc., A
376
(
2122
),
20170164
.
42.
Moskalik
,
M.
,
Grabowiecki
,
P.
,
Tȩgowski
,
J.
, and
Żulichowska
,
M.
(
2013
). “
Bathymetry and geographical regionalization of Brepollen (Hornsund, Spitsbergen) based on bathymetric profiles interpolations
,”
Pol. Polar Res.
34
(
1
),
1
22
.
43.
Muckenhuber
,
S.
,
Nilsen
,
F.
,
Korosov
,
A.
, and
Sandven
,
S.
(
2016
). “
Sea ice cover in Isfjorden and Hornsund, Svalbard (2000–2014) from remote sensing data
,”
Cryosphere
10
(
1
),
149
158
.
44.
National Snow and Ice Data Center
Bergy-bit—Cryosphere Glossary
,” available at https://nsidc.org/cryosphere/glossary/term/bergy-bit (Last viewed December
2020
).
45.
National Snow and Ice Data Center
Growler—Cryosphere Glossary
,” available at https://nsidc.org/cryosphere/glossary/term/growler (Last viewed December
2020
).
46.
Oppenheimer
,
M.
,
Glavovic
,
B.
,
Hinkel
,
J.
,
van de Wal
,
R.
,
Magnan
,
A.
,
Abd-Elgawad
,
A.
,
Cai
,
R.
,
Cifuentes-Jara
,
M.
,
DeConto
,
R.
,
Ghosh
,
T.
,
Hay
,
J.
,
Isla
,
F.
,
Marzeion
,
B.
,
Meyssignac
,
B.
, and
Sebesvari
,
Z.
(
2019
). “
Sea level rise and implications for low-lying islands, coasts and communities
,” in
IPCC Special Report on the Ocean and Cryosphere in a Changing Climate
, edited by
H.-O.
Portner
,
D.
Roberts
,
V.
Masson-Delmotte
,
P.
Zhai
,
M.
Tignor
,
E.
Poloczanska
,
K.
Mintenbeck
,
A.
Alegria
,
M.
Nicolai
,
A.
Okem
,
J.
Petzold
,
B.
Rama
, and
N. M.
Weyer
(to be published).
47.
Overland
,
J. E.
,
Hanna
,
E.
,
Hanssen-Bauer
,
I.
,
Kim
,
S. J.
,
Walsh
,
J. E.
,
Wang
,
M.
,
Bhatt
,
U. S.
, and
Thoman
,
R. L.
(
2017
). “
Surface air temperature [in Arctic Report Card 2017]
,” Technical Report, available at www.arctic.noaa.gov/Report-Card (Last viewed December 2020).
48.
Pettit
,
E.
(
2012
). “
Passive underwater acoustic evolution of a calving event
,”
Ann. Glaciol.
53
(
60
),
113
122
.
49.
Pettit
,
E.
,
Lee
,
K. M.
,
Brann
,
J. P.
,
Nystuen
,
J. A.
,
Wilson
,
P. S.
, and
Neel
,
S. O.
(
2015
). “
Unusually loud ambient noise in tidewater glacier fjords: A signal of ice melt
,”
Geophys. Res. Lett.
42
(
7
),
2309
2316
, .
50.
Pettit
,
E.
,
Nystuen
,
J.
, and
O'Neel
,
S.
(
2012
). “
Listening to glaciers: Passive hydroacoustics near marine-terminating glaciers
,”
Oceanography
25
(
3
),
104
105
.
51.
Porter
,
M. B.
(
2011
). “
The BELLHOP Manual and User's Guide: Preliminary draft
,” in Tech. Rep. (
Heat, Light and Sound Research, Inc.
,
La Jolla, CA
, 2011).
52.
Porter
,
M. B.
, and
Bucker
,
H. P.
(
1987
). “
Gaussian beam tracing for computing ocean acoustic fields
,”
J. Acoust. Soc. Am.
82
(
4
),
1349
1359
.
53.
Poulsen
,
A. J.
, and
Schmidt
,
H.
(
2016
). “
Acoustic noise properties in the rapidly changing Arctic Ocean
,”
Proc. Mtgs. Acoust.
28
(
1
),
070005
.
54.
Pritchard
,
R. S.
(
1990
). “
Sea ice noise-generating processes
,”
J. Acoust. Soc. Am.
88
(
6
),
2830
2842
.
55.
Sagen
,
H.
,
Johannessen
,
O. M.
, and
Sandven
,
S.
(
1990
). “
The influence of sea ice on ocean ambient sound
,” in
Ice Technology for Polar Operations
, edited by
P. W. T. K. S.
Murthy
,
J. G.
Paren
, and
W. M.
Sackinger
(
Computational Mechanics Publications
,
Cambridge, England
).
56.
Sanjana
,
M. C.
,
Latha
,
G.
,
Thirunavukkarasu
,
A.
, and
Venkatesan
,
R.
(
2018
). “
Ambient noise field and propagation in an Arctic fjord Kongsfjorden, Svalbard
,”
Polar Sci.
17
(
July
),
40
49
.
57.
Scholander
,
P. F.
, and
Nutt
,
D. C.
(
1960
). “
Bubble pressure in Greenland icebergs
,”
J. Glaciol.
3
(
28
),
671
678
.
58.
Schulz
,
M.
,
Berger
,
W. H.
, and
Jansen
,
E.
(
2008
). “
Listening to glaciers
,”
Nat. Geosci.
1
(
7
),
408
408
.
59.
Staszek
,
M. W.
, and
Moskalik
,
M. J.
(
2015
). “
Contemporary sedimentation in the forefield of Hornbreen, Hornsund
,”
Open Geosci.
7
(
1
),
000010151520150042
.
60.
Straneo
,
F.
, and
Cenedese
,
C.
(
2015
). “
The dynamics of Greenland's glacial fjords and their role in climate
,”
Ann. Rev. Mar. Sci.
7
(
1
),
89
112
.
61.
Straneo
,
F.
,
Curry
,
R. G.
,
Sutherland
,
D. A.
,
Hamilton
,
G. S.
,
Cenedese
,
C.
,
Våge
,
K.
, and
Stearns
,
L. A.
(
2011
). “
Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier
,”
Nat. Geosci.
4
(
5
),
322
327
.
62.
Straneo
,
F.
,
Heimbach
,
P.
,
Sergienko
,
O.
,
Hamilton
,
G.
,
Catania
,
G.
,
Griffies
,
S.
,
Hallberg
,
R.
,
Jenkins
,
A.
,
Joughin
,
I.
,
Motyka
,
R.
,
Pfeffer
,
W. T.
,
Price
,
S. F.
,
Rignot
,
E.
,
Scambos
,
T.
,
Truffer
,
M.
, and
Vieli
,
A.
(
2013
). “
Challenges to understanding the dynamic response of Greenland's marine terminating glaciers to oceanic and atmospheric forcing
,”
Bull. Am. Meteorol. Soc.
94
(
8
),
1131
1144
.
63.
Straneo
,
F.
,
Sutherland
,
D. A.
,
Holland
,
D.
,
Gladish
,
C.
,
Hamilton
,
G. S.
,
Johnson
,
H. L.
,
Rignot
,
E.
,
Xu
,
Y.
, and
Koppes
,
M.
(
2012
). “
Characteristics of ocean waters reaching Greenland's glaciers
,”
Ann. Glaciol.
53
(
60
),
202
210
.
64.
Sutherland
,
D. A.
,
Jackson
,
R. H.
,
Kienholz
,
C.
,
Amundson
,
J. M.
,
Dryer
,
W. P.
,
Duncan
,
D.
,
Eidam
,
E. F.
,
Motyka
,
R. J.
, and
Nash
,
J. D.
(
2019
). “
Direct observations of submarine melt and subsurface geometry at a tidewater glacier
,”
Science
365
(
6451
),
369
374
.
65.
Tegowski
,
J.
,
Deane
,
G. B.
,
Lisimenka
,
A.
, and
Blondel
,
P.
(
2011
). “
Underwater ambient noise of glaciers on Svalbard as indicator of dynamic processes in the Arctic
,” in
4th International Conference and Exhibition on “Underwater Acoustic Measurements: Technologies & Results,”
Kos, Greece
, pp.
1149
1154
.
66.
Tegowski
,
J.
,
Deane
,
G. B.
,
Lisimenka
,
A.
, and
Blondel
,
P.
(
2012
). “
Spectral and statistical analyses of ambient noise
,”
Proc. Mtgs. Acoust.
17
,
070079
.
67.
Urick
,
R. J.
(
1971
). “
The noise of melting icebergs
,”
J. Acoust. Soc. Am.
50
(
1B
),
337
341
.
68.
Wawrzyniak
,
T.
, and
Osuch
,
M.
(
2020
). “
A 40-year high Arctic climatological dataset of the Polish Polar Station Hornsund (SW Spitsbergen, Svalbard)
,”
Earth Syst. Sci. Data
12
(
2
),
805
815
.
69.
Zakarauskas
,
P.
, and
Thorleifson
,
J. M.
(
1991
). “
Directionality of ice cracking events
,”
J. Acoust. Soc. Am.
89
(
2
),
722
734
.
70.
Zhang
,
Z. Y.
(
2014
). “
Directionality and coherence of underwater noise and their impact on sonar array performance
,” in
Internoise 2014—43rd International Congress on Noise Control Engineering: Improving the World Through Noise Control
,
Fremantle, Australia
, pp.
1
10
.

Supplementary Material

You do not currently have access to this content.