Aberrations induced by soft tissue inhomogeneities often complicate high-intensity focused ultrasound (HIFU) therapies. In this work, a bilayer phantom made from polyvinyl alcohol hydrogel and ballistic gel was built to mimic alternating layers of water-based and lipid tissues characteristic of an abdominal body wall and to reproducibly distort HIFU fields. The density, sound speed, and attenuation coefficient of each material were measured using a homogeneous gel layer. A surface with random topographical features was designed as an interface between gel layers using a 2D Fourier spectrum approach and replicating different spatial scales of tissue inhomogeneities. Distortion of the field of a 256-element 1.5 MHz HIFU array by the phantom was characterized through hydrophone measurements for linear and nonlinear beam focusing and compared to the corresponding distortion induced by an ex vivo porcine body wall of the same thickness. Both spatial shift and widening of the focal lobe were observed, as well as dramatic reduction in focal pressures caused by aberrations. The results suggest that the phantom produced levels of aberration that are similar to a real body wall and can serve as a research tool for studying HIFU effects as well as for developing algorithms for aberration correction.

1.
C. R.
Hill
and
G. R.
ter Haar
, “
Review article: High intensity focused ultrasound-potential for cancer treatment
,”
Br. J. Radiolog.
68
,
1296
1303
(
1995
).
2.
M. R.
Bailey
,
V. A.
Khokhlova
,
O. A.
Sapozhnikov
,
S. G.
Kargl
, and
L. A.
Crum
, “
Physical mechanisms of the therapeutic effect of ultrasound: (A review
),”
Acoust. Phys.
49
,
369
388
(
2003
).
3.
T. D.
Khokhlova
,
M. S.
Canney
,
V. A.
Khokhlova
,
O. A.
Sapozhnikov
,
L. A.
Crum
, and
M. R.
Bailey
, “
Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling
,”
J. Acoust. Soc. Am.
130
,
3498
3510
(
2011
).
4.
V. A.
Khokhlova
,
J. B.
Fowlkes
,
W. W.
Roberts
,
G. R.
Schade
,
Z.
Xu
,
T. D.
Khokhlova
,
T. L.
Hall
,
A. D.
Maxwell
,
Y. N.
Wang
, and
C. A.
Cain
, “
Histotripsy methods in mechanical disintegration of tissue: Towards clinical applications
,”
Int. J. Hyperthermia
31
,
145
162
(
2015
).
5.
J. E.
Kennedy
, “
High-intensity focused ultrasound in the treatment of solid tumours
,”
Nat. Rev. Cancer
5
,
321
327
(
2005
).
6.
W. W.
Roberts
, “
Focused ultrasound ablation of renal and prostate cancer: Current technology and future directions
,”
Urol. Oncol.: Sem. Orig. Invest.
23
,
367
371
(
2005
).
7.
M. D.
Gillett
,
M. T.
Gettman
,
H.
Zincke
, and
M. L.
Blute
, “
Tissue ablation technologies for localized prostate cancer
,”
Mayo Clinic Proc.
79
,
1547
1555
(
2004
).
8.
R. O.
Illing
,
J. E.
Kennedy
,
F.
Wu
,
G. R.
ter Haar
,
A. S.
Protheroe
,
P. J.
Friend
,
F. V.
Gleeson
,
D. W.
Cranston
,
R. R.
Phillips
, and
M. R.
Middleton
, “
The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population
,”
Br. J. Cancer
93
,
890
895
(
2005
).
9.
C. G.
Chaussy
and
S.
Thuroff
, “
Transrectal high-intensity focused ultrasound for local treatment of prostate cancer: 2009 Update
,”
Urologe
48
,
710
718
(
2009
).
10.
C. H.
Fernandez
,
E. L.
Garcia
,
D. S.
Rios
, and
G. B.
Chomon
, “
Conservative treatment of renal cancer using HIFU: Procedure, indications, and results
,”
Actas Urologicas Espanolas
33
,
522
525
(
2009
).
11.
G. J.
Vricella
,
L. E.
Ponsky
, and
J. A.
Cadeddu
, “
Ablative technologies for urologic cancers
,”
Urol. Clinics N. A.
36
,
163
178
(
2009
).
12.
G.
Malietzis
,
L.
Monzon
,
J.
Hand
,
H.
Wasan
,
E.
Leen
,
M.
Abel
,
A.
Muhammad
,
P.
Price
, and
P.
Abel
, “
High-intensity focused ultrasound: Advances in technology and experimental trials support enhanced utility of focused ultrasound surgery in oncology
,”
Br. J. Radiol.
86
20130044
(
2013
).
13.
W. H.
She
,
T. T.
Cheung
,
C. R.
Jenkins
, and
M. G.
Irwin
, “
Clinical applications of high-intensity focused ultrasound
,”
Hong Kong Medic. J.
22
,
382
392
(
2016
).
14.
Y. H.
Hsiao
,
S. J.
Kuo
,
H. D.
Tsai
,
M. C.
Chou
, and
G. P.
Yeh
, “
Clinical application of high-intensity focused ultrasound in cancer therapy
,”
J. Cancer
7
,
225
231
(
2016
).
15.
R.
Ritchie
,
J.
Collin
,
C.
Coussios
, and
T.
Leslie
, “
Attenuation and de-focusing during high-intensity focused ultrasound therapy through peri-nephric fat
,”
Ultrasound Med. Biol.
39
,
1785
1793
(
2013
).
16.
Z. B.
Liu
,
T. B.
Fan
,
D.
Zhang
, and
X. F.
Gong
, “
Influence of the abdominal wall on the nonlinear propagation of focused therapeutic ultrasound
,”
Chinese Phys. B
18
,
4932
4937
(
2009
).
17.
T.
Christopher
, “
Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
125
139
(
1997
).
18.
J. J.
Macoskey
,
T. L.
Hall
,
J. R.
Sukovich
,
S. W.
Choi
,
K.
Ives
,
E.
Johnsen
,
C. A.
Cain
, and
Z.
Xu
, “
Soft-tissue aberration correction for histotripsy
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
65
,
2073
2085
(
2018
).
19.
S. W.
Flax
and
M.
O'Donnell
, “
Phase-aberration correction using signals from point reflectors and diffuse scatterers: Basic principles
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
35
,
758
767
(
1988
).
20.
L. M.
Hinkelman
,
T. D.
Mast
,
L. A.
Metlay
, and
R. C.
Waag
, “
The effect of abdominal wall morphology on ultrasonic pulse distortion. Part I. Measurements
,”
J. Acoust. Soc. Am.
104
,
3635
3649
(
1998
).
21.
T. D.
Mast
,
L. M.
Hinkelman
,
M. J.
Orr
, and
R. C.
Waag
, “
The effect of abdominal wall morphology on ultrasonic pulse distortion. Part II. Simulations
,”
J. Acoust. Soc. Am.
104
,
3651
3664
(
1998
).
22.
L. M.
Hinkelman
,
D. L.
Liu
,
L. A.
Metlay
, and
R. C.
Waag
, “
Measurements of ultrasonic pulse arrival time and energy-level variations produced by propagation through abdominal-wall
,”
J. Acoust. Soc. Am.
95
,
530
541
(
1994
).
23.
T. D.
Mast
,
L. M.
Hinkelman
,
M. J.
Orr
,
V. W.
Sparrow
, and
R. C.
Waag
, “
Simulation of ultrasonic pulse propagation through the abdominal wall
,”
J. Acoust. Soc. Am.
102
,
1177
1190
(
1997
).
24.
Y.
Sumino
and
R. C.
Waag
, “
Measurements of ultrasonic pulse arrival time differences produced by abdominal-wall specimens
,”
J. Acoust. Soc. Am.
90
,
2924
2930
(
1991
).
25.
M. S.
Canney
,
M. R.
Bailey
,
L. A.
Crum
,
V. A.
Khokhlova
, and
O. A.
Sapozhnikov
, “
Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach
,”
J. Acoust. Soc. Am.
124
,
2406
2420
(
2008
).
26.
G. A.
Cortela
,
C. A.
Negreira
, and
W. C. A.
Pereira
, “
Durability study of a gellan gum-based tissue-mimicking phantom for ultrasonic thermal therapy
,”
J. Acoust. Soc. Am.
147
,
1531
1545
(
2020
).
27.
C.
Lafon
,
V.
Zderic
,
M. L.
Noble
,
J. C.
Yuen
,
P. J.
Kaczkowski
,
O. A.
Sapozhnikov
,
F.
Chavrier
,
L. A.
Crum
, and
S.
Vaezy
, “
Gel phantom for use in high-intensity focused ultrasound dosimetry
,”
Ultrasound Med. Biol.
31
,
1383
1389
(
2005
).
28.
R. L.
King
,
Y. B.
Liu
,
S.
Maruvada
,
B. A.
Herman
,
K. A.
Wear
, and
G. R.
Harris
, “
Development and characterization of a tissue-mimicking material for high-intensity focused ultrasound
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
,
1397
1405
(
2011
).
29.
G. C.
Ng
,
P. D.
Freiburger
,
W. F.
Walker
, and
G. E.
Trahey
, “
A speckle target adaptive imaging technique in the presence of distributed aberrations
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
140
151
(
1997
).
30.
P. V.
Yuldashev
,
L. M.
Krutyansky
,
V. A.
Khokhlova
,
A. P.
Brysev
, and
F. V.
Bunkin
, “
Distortion of the focused finite amplitude ultrasound beam behind the random phase layer
,”
Acoust. Phys.
56
,
467
474
(
2010
).
31.
Z. B.
Liu
,
X. S.
Guo
,
J.
Tu
, and
D.
Zhang
, “
Variations in temperature distribution and tissue lesion formation induced by tissue inhomogeneity for therapeutic ultrasound
,”
Ultrasound Med. Biol.
40
,
1857
1868
(
2014
).
32.
Z. B.
Liu
,
T. B.
Fan
,
X. S.
Guo
, and
D.
Zhang
, “
Effect of tissue inhomogeneity on nonlinear propagation of focused ultrasound
,”
Chinese Phys. Lett.
27
094303
(
2010
).
33.
T.
Bjastad
,
S. A.
Aase
, and
H.
Torp
, “
Synthetic transmit beam technique in an aberrating environment
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
56
,
1340
1351
(
2009
).
34.
A.
Kharine
,
S.
Manohar
,
R.
Seeton
,
R. G. M.
Kolkman
,
R. A.
Bolt
,
W.
Steenbergen
, and
F. F. M.
de Mul
, “
Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography
,”
Phys. Medic. Biol.
48
,
357
370
(
2003
).
35.
K. J. M.
Surry
,
H. J. B.
Austin
,
A.
Fenster
, and
T. M.
Peters
, “
Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging
,”
Phys. Medic. Biol.
49
,
5529
5546
(
2004
).
36.
S.
Taghizadeh
,
C.
Labuda
, and
J.
Mobley
, “
Development of a tissue-mimicking phantom of the brain for ultrasonic studies
,”
Ultrasound Med. Biol.
44
,
2813
2820
(
2018
).
37.
J. Z.
Kartchner
,
R.
Amini
,
L.
Stolz
, and
S.
Adhikari
, “
A novel clear ballistics gel phantom for ultrasound training
,”
World J. Emerg. Med.
6
,
225
(
2015
).
38.
B.
Meirza
, “
Development of vessel phantoms for ultrasound methods
,” M.A. thesis,
Lund University
(
2018
).
39.
P.
Blanc-Benon
,
B.
Lipkens
,
L.
Dallois
,
M. F.
Hamilton
, and
D. T.
Blackstock
, “
Propagation of finite amplitude sound through turbulence: Modeling with geometrical acoustics and the parabolic approximation
,”
J. Acoust. Soc. Am.
111
,
487
498
(
2002
).
40.
T. D.
Khokhlova
,
G. R.
Schade
,
Y. N.
Wang
,
S. V.
Buravkov
,
V. P.
Chernikov
,
J. C.
Simon
,
F.
Starr
,
A. D.
Maxwell
,
M. R.
Bailey
,
W.
Kreider
, and
V. A.
Khokhlova
, “
Pilot in vivo studies on transcutaneous boiling histotripsy in porcine liver and kidney
,”
Sci. Rep.
9
,
20176
(
2019
).
41.
M. A.
Ghanem
,
A. D.
Maxwell
,
W.
Kreider
,
B. W.
Cunitz
,
V. A.
Khokhlova
,
O. A.
Sapozhnikov
, and
M. R.
Bailey
, “
Field characterization and compensation of vibrational nonuniformity for a 256-element focused ultrasound phased array
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
65
,
1618
1630
(
2018
).
42.
P. B.
Rosnitskiy
,
P. V.
Yuldashev
,
O. A.
Sapozhnikov
,
A.
Maxwell
,
W.
Kreider
,
M. R.
Bailey
, and
V. A.
Khokhlova
, “
Design of HIFU transducers to generate specific nonlinear ultrasound fields
,”
Phys. Procedia
87
,
132
138
(
2016
).
43.
P. B.
Rosnitskiy
,
P. V.
Yuldashev
, and
V. A.
Khokhlova
, “
Effect of the angular aperture of medical ultrasound transducers on the parameters of nonlinear ultrasound field with shocks at the focus
,”
Acoust. Phys.
61
,
301
307
(
2015
).
44.
O. V.
Bessonova
,
V. A.
Khokhlova
,
M. S.
Canney
,
M. R.
Bailey
, and
L. A.
Crum
, “
A derating method for therapeutic applications of high intensity focused ultrasound
,”
Acoust. Phys.
56
,
354
363
(
2010
).
45.
D. G.
Brown
and
M. F.
Insasa
, “
Acoustic scattering theory applied to soft biological tissues
,” in
Ultrasonics Scattering in Biological Tissue
, edited by
K. K.
Shung
and
G. A.
Thieme
(
CRC Press
,
Boca Raton, FL
,
1993
), pp.
75
124
.
46.
A.
Pierce
, “
Mathematical theory of wave propagation
,” in
Handbook of Acoustics
, edited by
M.
Crocker
(
Wiley-IEEE
,
Hoboken, NJ
,
1998
), pp.
21
37
.
47.
B. E.
Treeby
and
B. T.
Cox
, “
k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields
,”
J. Biomed. Optics
15
021314
(
2010
).
48.
B. E.
Treeby
,
J.
Jaros
,
A. P.
Rendell
, and
B. T.
Cox
, “
Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method
,”
J. Acoust. Soc. Am.
131
,
4324
4336
(
2012
).
49.
P. B.
Rosnitskiy
,
P. V.
Yuldashev
,
O. A.
Sapozhnikov
,
L. R.
Gavrilov
, and
V. A.
Khokhlova
, “
Simulation of nonlinear trans-skull focusing and formation of shocks in brain using a fully populated ultrasound array with aberration correction
,”
J. Acoust. Soc. Am.
146
,
1786
1798
(
2019
).
50.
W.
Kreider
,
P. V.
Yuldashev
,
O. A.
Sapozhnikov
,
N.
Farr
,
A.
Partanen
,
M. R.
Bailey
, and
V. A.
Khokhlova
, “
Characterization of a multi-element clinical HIFU system using acoustic holography and nonlinear modeling
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
60
,
1683
1698
(
2013
).
51.
T.
Koch
,
S.
Lakshmanan
,
S.
Brand
,
M.
Wicke
,
K.
Raum
, and
D.
Morlein
, “
Ultrasound velocity and attenuation of porcine soft tissues with respect to structure and composition: II. Skin and backfat
,”
Meat Sci.
88
,
67
74
(
2011
).
52.
T.
Koch
,
S.
Lakshmanan
,
S.
Brand
,
M.
Wicke
,
K.
Raum
, and
D.
Morlein
, “
Ultrasound velocity and attenuation of porcine soft tissues with respect to structure and composition: I. Muscle
,”
Meat Sci.
88
,
51
58
(
2011
).
53.
M. O.
Culjat
,
D.
Goldenberg
,
P.
Tewari
, and
R. S.
Singh
, “
A review of tissue substitutes for ultrasound imaging
,”
Ultrasound Med. Biol.
36
,
861
873
(
2010
).
54.
F.
Shahidi
,
Bailey's Industrial Oil & Fat Products. Edible Oil and Fat Products: Chemistry, Properties, and Health Effects
(
John Wiley & Sons
,
Hoboken, NJ
,
2005
).
55.
L.
Adamczak
,
M.
Chmiel
,
T.
Florowski
,
D.
Pietrzak
,
M.
Witkowski
, and
T.
Barczak
, “
Using density measurement on semispinalis capitis as a tool to determinate the composition of pork meat
,”
Food Analytical Meth.
11
,
1728
1734
(
2018
).
56.
F.
Duck
,
Physical Properties of Tissue
(
Academic Press
,
Cambridge
,
1990
).
57.
L.
Elvira
,
C.
Duran
,
R. T.
Higuti
,
M. M.
Tiago
,
A.
Ibanez
,
M.
Parrilla
,
E.
Valverde
,
A.
Jimenez
, and
Q.
Bassat
, “
Development and characterization of medical phantoms for ultrasound imaging based on customizable and mouldable polyvinyl alcohol cryogel-based materials and 3-d printing: Application to high-frequency cranial ultrasonography in infants
,”
Ultrasound Med. Biol.
45
,
2226
2241
(
2019
).
58.
Z. Y.
Ma
,
J.
Ma
,
D.
Zhang
, and
J.
Tu
, “
Random phase screen influence of the inhomogeneous tissue layer on the generation of acoustic vortices
,”
Chinese Phys. B
27
034301
(
2018
).
59.
E.
Martin
,
J.
Jaros
, and
B. E.
Treeby
, “
Experimental validation of k-wave: Nonlinear wave propagation in layered, absorbing fluid media
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
67
,
81
91
(
2020
).
60.
F.
Wu
,
Z. B.
Wang
,
W. Z.
Chen
,
W.
Wang
,
Y. Z.
Gui
,
M.
Zhang
,
G. Q.
Zheng
,
Y. J.
Zhou
,
G. L.
Xu
,
M.
Li
,
C. W.
Zhang
,
H. Y.
Ye
, and
R.
Feng
, “
Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: An overview
,”
Ultrasonics Sonochem.
11
,
149
154
(
2004
).
You do not currently have access to this content.