Research has shown that using acoustic radiation modes combined with surface velocity measurements provide an accurate method of measuring the radiated sound power from vibrating plates. This paper investigates the extension of this method to acoustically radiating cylindrical structures. The mathematical formulations of the radiation resistance matrix and the accompanying acoustic radiation modes of a baffled cylinder are developed. Computational sound power calculations using the vibration-based radiation mode (VBRM) method and the boundary element method are then compared and shown to have good agreement. Experimental surface velocity measurements of a cylinder are taken using a scanning laser Doppler vibrometer and the VBRM method is used to calculate sound power. The results are compared to sound power measurements taken using ISO 3741.

1.
S. J.
Elliot
and
M. E.
Johnson
, “
Radiation modes and the active control of sound power
,”
J. Acoust. Soc. Am.
94
(
4
)
2194
2204
(
1993
).
2.
F.
Fahy
and
P.
Gardonio
, “
Sound radiation by vibrating structures,” in Sound and Structural Vibration
, in
Radiation, Transmission and Response
, 2nd ed. (
Academic Press
,
Oxford, UK
,
2007
).
3.
M. R.
Bai
and
M.
Tsao
, “
Estimation of sound power of baffled planar sources using radiation matrices
,”
J. Acoust. Soc. Am.
112
,
876
883
(
2002
).
4.
C. B.
Jones
,
C. B.
Goates
,
J. D.
Blotter
, and
S. D
Sommerfeldt
, “
Experimental validation of determining sound power measurements using acoustic radiation modes and a laser vibrometer
,”
Appl. Acoust.
164
,
107254
(
2020
).
5.
Y.
Cao
,
S. D.
Sommerfeldt
,
W.
Johnson
,
J. D.
Blotter
, and
P.
Aslani
, “
An analysis of control using the weighted sum of spatial gradients in active structural acoustic control for flat panels
,”
J. Acoust. Soc. Am.
138
,
2986
2997
(
2015
).
6.
P.
Aslani
,
S. D.
Sommerfeldt
, and
J. D.
Blotter
, “
Experimental active control of cylindrical shells using the weighted sum of spatial gradients control metric
,”
J. Acoust. Soc. Am.
143
,
271
280
(
2018
).
7.
J. M.
Fisher
,
J. D.
Blotter
,
S. D.
Sommerfeldt
, and
K. L.
Gee
, “
Development of a pseudouniform structural quantity for use in active structural acoustic control of simply supported plates: An analytical comparison
,”
J. Acoust. Soc. Am.
131
,
3833
3840
(
2012
).
8.
J.
Liu
,
Y.
Liu
, and
J. S.
Bolton
, “
The application of acoustic radiation modes to engine oil pan design
,” SAE Technical Paper No. 2017-01-1844 (
2017
).
9.
J.
Liu
,
Y.
Liu
, and
J. S.
Bolton
, “
Acoustic source reconstruction and visualization based on acoustic radiation modes
,”
J. Sound Vib.
437
,
358
372
(
2018
).
10.
D. M.
Photiadis
, “
The relationship of singular value decomposition to wave-vector filtering in sound radiation problems
,”
J. Acoust. Soc. Am.
88
(
2
),
1152
1159
(
1990
).
11.
G. V.
Borgiotti
, “
The power radiated by a vibrating body in an acoustic fluid and its determination from boundary measurements
,”
J. Acoust. Soc. Am.
88
(
4
),
1884
1893
(
1990
).
12.
A.
Sarkissian
, “
Acoustic radiation from finite structures
,”
J. Acoust. Soc. Am.
90
(
1
),
574
578
(
1991
).
13.
G. V.
Borgiotti
and
K. E.
Jones
, “
Frequency independence property of radiation spatial filters
,”
J. Acoust. Soc. Am.
96
(
6
),
3516
3524
(
1994
).
14.
P.
Aslani
,
S. D.
Sommerfeldt
, and
J. D.
Blotter
, “
Analysis of external radiation from circular cylindrical shells
,”
J. Sound Vib.
408
,
154
167
(
2017
).
15.
C. B.
Goates
,
S. D.
Sommerfeldt
, and
J. D.
Blotter
, “
Frequency trends of acoustic radiation modes for cylindrical structures
,”
Proc. Mtgs. Acoust.
35
,
065003
(
2018
).
16.
J.
Demmel
,
I.
Dumitriu
, and
O.
Holtz
, “
Fast linear algebra is stable
,”
Numer. Math.
108
(
1
)
59
91
(
2007
).
17.
S.
Winograd
, “
On the number of multiplications necessary to compute certain functions
,”
Commun. Pure Appl. Math.
23
(
2
),
165
179
(
1970
).
18.
W.
Soedel
,
Vibrations of Shells and Plates
, 2nd ed.,
revised and expanded
(
Marcel Dekker
,
New York
,
1993
).
You do not currently have access to this content.