Based on the notion of similarity or “distance” between cross-spectral density matrices (CSDMs), a recent analysis of matched-field source localization in a stochastic ocean waveguide provided evidence that geodesic distances between CSDMs could be employed to estimate the source location in range and depth. For M acoustic sensors configured as a vertical array, these M×M matrices were estimated from source and replica fields propagated to the array and interpreted as points in a Riemannian manifold whose dimension is M2. Because they serve as fundamental constructs for many source localization algorithms, visualizations of CSDM manifolds are illustrated here in an attempt to gain insight into this geometric approach by using simulated acoustic fields propagated through an ocean waveguide with internal wave-induced variability. The manifold is treated as an undirected, weighted graph whose nodes are CSDMs with edges (weights) describing a measure of similarity between nodes. A non-linear dimensionality reduction technique, diffusion maps, is applied to project these high-dimensional matrices onto a three-dimensional subspace using a spectral decomposition of the graph in an attempt to grasp relationships among such matrices. The mapping is designed to preserve the notion of distance between matrices, allowing for a meaningful visualization of the high-dimensional manifold.

1.
S.
Finette
and
P. C.
Mignerey
, “
Stochastic matched-field localization of an acoustic source based on principles of Riemannian geometry
,”
J. Acoust. Soc. Am.
143
(
6
),
3628
3638
(
2018
).
2.
R.
Cao
,
K.
Yang
,
Y.
Ma
,
Q.
Yang
, and
Y.
Shi
, “
Passive broadband source localization based on a Riemannian distance with a short vertical array in the deep ocean
,”
J. Acoust. Soc. Am.
145
,
EL567
EL573
(
2019
).
3.
Y.
Li
and
K. M.
Wong
, “
Riemannian distances for signal classification by power spectral density
,”
IEEE J. Sel. Top. Signal Proc.
7
(
4
),
655
669
(
2013
).
4.
D.
Tollefsen
,
P.
Gerstoft
, and
W. S.
Hodgkiss
, “
Multiple-array passive acoustic source localization in shallow water
,”
J. Acoust. Soc. Am.
141
(
3
),
1501
1513
(
2017
).
5.
H.
Niu
,
E.
Reeves
, and
P.
Gerstoft
, “
Source localization in an ocean waveguide using supervised machine learning
,”
J. Acoust. Soc. Am.
142
(
3
),
1176
1188
(
2017
).
6.
R. R.
Coifman
and
S.
Lafon
, “
Diffusion maps
,”
Appl. Comput. Harmon. Anal.
21
(
1
),
5
30
(
2006
).
7.
A. B.
Lee
and
L.
Wasserman
, “
Spectral connectivity analysis,”
J. Am. Stat. Assoc.
105
(
491
)
1241
1256
(
2010
).
8.
M.
Berger
and
B.
Gostiaux
,
Differential Geometry: Manifolds, Curves and Surfaces
(
Springer
,
New York
,
1988
).
9.
C. J.
Isham
,
Modern Differential Geometry for Physicists
, 2nd ed. (
Allied Publishers PVT. Limited
,
New Delhi
,
2002
).
10.
M.
Arnaudon
,
F.
Barbaresco
, and
L.
Yang
, “
Riemannian medians and means with applications to radar signal processing
,”
IEEE J. Sel. Top. Signal Proc.
7
(
4
),
595
604
(
2013
).
11.
F.
Barbaresco
, “
New foundation of radar Doppler signal processing based on advanced differential geometry of symmetric spaces: Doppler matrix CFAR and radar application
,” in
Proc. Radar '09 Conf.
, Bordeaux, France (
2009
).
12.
Y.
Cheng
,
X.
Hua
,
H.
Wang
,
Y.
Qin
, and
X.
Li
, “
The geometry of signal detection with applications to radar signal processing
,”
Entropy
18
,
381
397
(
2011
).
13.
Y.
Cheng
,
X.
Wang
,
M.
Morelande
, and
B.
Moran
, “
Information geometry of target tracking sensor networks
,”
Inform. Fusion
14
,
311
326
(
2013
).
14.
P. T.
Fletcher
,
C.
Lu
,
S. M.
Pizer
, and
S.
Joshi
, “
Principal geodesic analysis for the study of nonlinear statistics of shape
,”
IEEE Trans. Med. Imaging
23
(
8
),
995
1005
(
2004
).
15.
K. M.
Wong
,
J.-K.
Zhang
,
J.
Liang
, and
H.
Jiang
, “
Mean and median of PSD matrices on a Riemannian manifold: Application to detection of narrow-band sonar signals
,”
IEEE Trans. Signal Proc.
65
(
24
),
6536
6550
(
2017
).
16.
R.
Talmon
,
I.
Cohen
,
S.
Gannot
, and
R. R.
Coifman
, “
Diffusion maps for signal processing: A deeper look at manifold-learning techniques based on kernels and graphs
,”
IEEE Signal Proc. Mag.
30
(
4
),
75
86
(
2013
).
17.
M. M.
Bronstein
,
J.
Bruna
,
Y.
LeCun
,
A.
Szlam
, and
P.
Vandergheynst
, “
Geometric deep learning
,”
IEEE Signal Proc. Mag.
34
,
18
42
(
2017
).
18.
A.
Singer
, “
From graph to manifold Laplacian: The convergence rate
,”
Appl. Comput. Harmon. Anal.
21
,
128
134
(
2006
).
19.
Ocean Acoustics Library
, available at http://oalib.hlsresearch.com (Last viewed January 22,
2017
).
20.
W. A.
Kuperman
and
F.
Ingenito
, “
Spatial correlation of surface generated noise in a stratified ocean
,”
J. Acoust. Soc. Am.
67
(
6
),
1988
1996
(
1980
).
21.
J.
de la Porte
,
B. M.
Herbst
,
W.
Hereman
, and
S. J.
van der Walt
, “
An introduction to diffusion maps
,” in
Proc. 19th Symposium of the Pattern Recognition Assoc. of South Africa (PRASA 2008)
(
2008
), pp.
15
25
.
22.
R. R.
Coifman
,
Y.
Shkolnisky
,
F. J.
Sigworth
, and
A.
Singer
, “
Graph Laplacian tomography from unknown random projections
,”
IEEE Trans. Image Proc.
17
(
10
),
1891
1899
(
2008
).
23.
S.
Lafon
and
A. B.
Lee
, “
Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and data set parameterization
,”
IEEE Trans. Pattern Anal. Mach. Learn.
28
(
9
)
1393
1403
(
2006
).
24.
T.
Berry
and
T.
Sauer
, “
Local kernels and the geometric structure of data
,”
Appl. Comput. Harmon. Anal.
40
,
439
469
(
2016
).
25.
O.
Lindenbaum
,
M.
Salhov
,
A.
Yeredor
, and
A.
Averbuch
, “
Gaussian bandwidth selection for manifold learning and classification
,” arXiv:1707.01093v2 (
2019
).
26.
R.
Bhatia
,
Positive Definite Matrices
(
Princeton University Press
,
Princeton, NJ
,
2007
), Chap. 6, p.
204
.
27.
S. T.
Smith
, “
Covariance, subspace, and intrinsic Cramer-Rao bounds
,”
IEEE Trans. Signal Proc.
53
(
5
),
1610
1630
(
2005
).
28.
A.
Aubry
,
A.
De Maio
,
L.
Pallotta
, and
A.
Farina
, “
Covariance matrix estimation via geometric barycenters and its application to radar training data selection
,”
IET Radar Sonar Navig.
7
(
6
),
600
614
(
2013
).
29.
P. A.
Absil
,
R.
Mahony
, and
R.
Sepulchre
,
Optimization on Matrix Manifolds
(
Princeton University Press
,
NJ
,
2008
).
30.
W.
Lian
,
R.
Talmon
,
H.
Zaveri
,
L.
Carin
, and
R.
Coifman
, “
Multivariate time-series analysis and diffusion maps
,”
Signal Proc.
116
,
13
28
(
2015
).
31.
J.
Lafferty
and
G.
Lebanon
, “
Difffusion kernels on statistical manifolds
,”
J. Mach. Learn. Res.
6
,
129
163
(
2005
).
You do not currently have access to this content.