Widespread transmission of a novel coronavirus, COVID-19, has caused major public health and economic problems around the world. Significant mitigation efforts have been implemented to reduce the spread of COVID-19 but the role of ambient noise and elevated vocal effort on airborne transmission have not been widely reported. Elevated vocal effort has been shown to increase emission of potentially infectious respiratory droplets, which can remain airborne for up to several hours. Multiple confirmed clusters of COVID-19 transmission were associated with settings where elevated vocal effort is generally required for communication, often due to high ambient noise levels, including crowded bars and restaurants, meat packing facilities, and long-stay nursing homes. Clusters of COVID-19 transmission have been frequently reported in each of these settings. Therefore, analysis of COVID-19 transmission clusters in different settings should consider whether higher ambient noise levels, which are associated with increased vocal effort, may be a contributing factor in those settings. Mitigation strategies that include reduction of ambient noise, softer speech practices, and the use of technology such as microphones and speakers to decrease vocal effort will likely reduce the risk of transmitting COVID-19 or other airborne pathogens.

1.
Asadi
,
S.
,
Cappa
,
C. D.
,
Barreda
,
S.
,
Wexler
,
A. S.
,
Bouvier
,
N. M.
, and
Ristenpart
,
W. D.
(
2020
). “
Efficacy of masks and face coverings in controlling outward aerosol particle emission from expiratory activities
,”
Sci. Rep.
10
,
15665
.
2.
Asadi
,
S.
,
Wexler
,
A. S.
,
Cappa
,
C. D.
,
Barreda
,
S.
,
Bouvier
,
N. M.
, and
Ristenpart
,
W. D.
(
2019
). “
Aerosol emission and superemission during human speech increase with voice loudness
,”
Sci. Rep.
9
,
2348
.
3.
Berglund
,
B.
,
Thomas
,
L.
, and
Schwela
,
D. H.
(
1999
).
Guidelines for Community Noise
(
World Health Organization
,
Geneva, Switzerland
).
4.
Bourouiba
,
L.
(
2020
). “
Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of COVID-19
,”
JAMA
323
,
1837
1838
.
5.
Courtemanche
,
C.
,
Garuccio
,
J.
,
Le
,
A.
,
Pinkston
,
J.
, and
Yelowitz
,
A.
(
2020
). “
Strong social distancing measures in the United States reduced the COVID-19 growth rate
,” Health Affairs (University of Maryland, College Park, MD).
6.
Dong
,
E.
,
Du
,
H.
, and
Gardner
,
L.
(
2020
). “
An interactive web-based dashboard to track COVID-19 in real time
,”
Lancet Infect. Dis.
20
,
533
534
.
7.
Dyal
,
J. W.
,
Grant
,
M. P.
,
Broadwater
,
K.
,
Bjork
,
A.
,
Waltenburg
,
M. A.
,
Gibbins
,
J. D.
,
Hale
,
C.
,
Silver
,
M.
,
Fischer
,
M.
,
Steinberg
,
J.
,
Basler
,
C. A.
,
Jacobs
,
J. R.
,
Kennedy
,
E. D.
,
Tomasi
,
S.
,
Trout
,
D.
,
Hornsby-Myers
,
J.
,
Oussayef
,
N. L.
,
Delaney
,
L. J.
,
Patel
,
K.
,
Shetty
,
V.
,
Kline
,
K. E.
,
Schroeder
,
B.
,
Herlihy
,
R. K.
,
House
,
J.
,
Jervis
,
R.
,
Clayton
,
J. L.
,
Ortbahn
,
D.
,
Austin
,
C.
,
Berl
,
E.
,
Moore
,
Z.
,
Buss
,
B. F.
,
Stover
,
D.
,
Westergaard
,
R.
,
Pray
,
I.
,
DeBolt
,
M.
,
Person
,
A.
,
Gabel
,
J.
,
Kittle
,
T. S.
,
Hendren
,
P.
,
Rhea
,
C.
,
Holsinger
,
C.
,
Dunn
,
J.
,
Turabelidze
,
G.
,
Ahmed
,
F. S.
,
deFijter
,
S.
,
Pedati
,
C. S.
,
Rattay
,
K.
,
Smith
,
E. E.
,
Luna-Pinto
,
C.
,
Cooley
,
L. A.
,
Saydah
,
S.
,
Preacely
,
N. D.
,
Maddox
,
R. A.
,
Lundeen
,
E.
,
Goodwin
,
B.
,
Karpathy
,
S. E.
,
Griffing
,
S.
,
Jenkins
,
M. M.
,
Lowry
,
G.
,
Schwarz
,
R. D.
,
Yoder
,
J.
,
Peacock
,
G.
,
Walke
,
H. T.
,
Rose
,
D. A.
, and
Honein
,
M. A.
(
2020
). “
COVID-19 among workers in meat and poultry processing facilities—19 states, April 2020
,”
MMWR Morb. Mortal Wkly. Rep.
69
,
557
561
.
8.
Farber
,
G. S.
, and
Wang
,
L. M.
(
2017
). “
Analyses of crowd-sourced sound levels of restaurants and bars in New York City
,”
Proc. Mtgs. Acoust.
31
,
040003
.
9.
Hamner
,
L.
,
Dubbel
,
P.
,
Capron
,
I.
,
Ross
,
A.
,
Jordan
,
A.
,
Lee
,
J.
,
Lynn
,
J.
,
Ball
,
A.
,
Narwal
,
S.
,
Russell
,
S.
,
Patrick
,
D.
, and
Leibrand
,
H.
(
2020
). “
High SARS-CoV-2 attack rate following exposure at a choir practice—Skagit County, Washington, March 2020
,”
MMWR Morb. Mortal Wkly. Rep.
69
,
606
610
.
10.
Iulietto
,
M. F.
,
Sechi
,
P.
,
Gaudenzi
,
C. M.
,
Grispoldi
,
L.
,
Ceccarelli
,
M.
,
Barbera
,
S.
, and
Cenci-Goga
,
B. T.
(
2018
). “
Noise assessment in slaughterhouses by means of a smartphone app
,”
Ital. J. Food Safety
7
,
7053
.
11.
Joosse
,
L. L.
(
2011
). “
Sound levels in nursing homes
,”
J. Gerontol. Nurs.
37
,
30
35
.
12.
Kim
,
S. H.
,
Chang
,
S. Y.
,
Sung
,
M.
,
Park
,
J. H.
,
Bin Kim
,
H.
,
Lee
,
H.
,
Choi
,
J. P.
,
Choi
,
W. S.
, and
Min
,
J. Y.
(
2016
). “
Extensive viable Middle East respiratory syndrome (MERS) coronavirus contamination in air and surrounding environment in MERS isolation wards
,”
Clin. Infect. Dis.
63
,
363
369
.
13.
Lu
,
J.
,
Gu
,
J.
,
Li
,
K.
,
Xu
,
C.
,
Su
,
W.
,
Lai
,
Z.
,
Zhou
,
D.
,
Yu
,
C.
,
Xu
,
B.
, and
Yang
,
Z.
(
2020
). “
COVID-19 outbreak associated with air conditioning in restaurant, Guangzhou, China, 2020
,”
Emerg. Infect. Dis.
26
(
7
),
1628
1631
.
14.
McCreedy
,
E. M.
,
Weinstein
,
B. E.
,
Chodosh
,
J.
, and
Blustein
,
J.
(
2018
). “
Hearing loss: Why does it matter for nursing homes?
,”
J. Am. Med. Dir. Assoc.
19
,
323
327
.
15.
McMichael
,
T. M.
,
Currie
,
D. W.
,
Clark
,
S.
,
Pogosjans
,
S.
,
Kay
,
M.
,
Schwartz
,
N. G.
,
Lewis
,
J.
,
Baer
,
A.
,
Kawakami
,
V.
,
Lukoff
,
M. D.
,
Ferro
,
J.
,
Brostrom-Smith
,
C.
,
Rea
,
T. D.
,
Sayre
,
M. R.
,
Riedo
,
F. X.
,
Russell
,
D.
,
Hiatt
,
B.
,
Montgomery
,
P.
,
Rao
,
A. K.
,
Chow
,
E. J.
,
Tobolowsky
,
F.
,
Hughes
,
M. J.
,
Bardossy
,
A. C.
,
Oakley
,
L. P.
,
Jacobs
,
J. R.
,
Stone
,
N. D.
,
Reddy
,
S. C.
,
Jernigan
,
J. A.
,
Honein
,
M. A.
,
Clark
,
T. A.
, and
Duchin
,
J. S.
(
2020
). “
Epidemiology of COVID-19 in a long-term care facility in King County, Washington
,”
New Engl. J. Med.
382
,
2005
2011
.
16.
Milton
,
D. K.
(
2020
). “
A Rosetta Stone for understanding infectious drops and aerosols
,”
J. Pediatric Infect. Dis. Soc.
9
,
413
415
.
17.
Pearsons
,
K.
,
Bennett
,
R.
, and
Fidell
,
S.
(
1977
). “
Speech levels in various noise environments
,” USEP Agency, Washington, D.C.
18.
Stadnytskyi
,
V.
,
Bax
,
C. E.
,
Bax
,
A.
, and
Anfinrud
,
P.
(
2020
). “
The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission
,”
Proc. Natl. Acad. Sci. U.S.A.
117
(
22
),
11875
11877
.
19.
Yu
,
I. T.
,
Li
,
Y.
,
Wong
,
T. W.
,
Tam
,
W.
,
Chan
,
A. T.
,
Lee
,
J. H.
,
Leung
,
D. Y.
, and
Ho
,
T.
(
2004
). “
Evidence of airborne transmission of the severe acute respiratory syndrome virus
,”
New Engl. J. Med.
350
,
1731
1739
.
20.
Zhu
,
N.
,
Zhang
,
D.
,
Wang
,
W.
,
Li
,
X.
,
Yang
,
B.
,
Song
,
J.
,
Zhao
,
X.
,
Huang
,
B.
,
Shi
,
W.
,
Lu
,
R.
,
Niu
,
P.
,
Zhan
,
F.
,
Ma
,
X.
,
Wang
,
D.
,
Xu
,
W.
,
Wu
,
G.
,
Gao
,
G. F.
,
Tan
,
W.
, China Novel Coronavirus Investigating and Research Team (
2020
). “
A novel coronavirus from patients with pneumonia in China, 2019
,”
New Engl. J. Med.
382
,
727
733
.
You do not currently have access to this content.