Microbubble-mediated ultrasound therapies have a common need for methods that can noninvasively monitor the treatment. One approach is to use the bubbles' acoustic emissions as feedback to the operator or a control unit. Current methods interpret the emissions' frequency content to infer the microbubble activities and predict therapeutic outcomes. However, different studies placed their sensors at different angles relative to the emitter and bubble cloud. Here, it is evaluated whether such angles influence the captured emissions such as the frequency content. In computer simulations, 128 coupled bubbles were sonicated with a 0.5-MHz, 0.35-MPa pulse, and the acoustic emissions generated by the bubbles were captured with two sensors placed at different angles. The simulation was replicated in experiments using a microbubble-filled gel channel (0.5-MHz, 0.19–0.75-MPa pulses). A hydrophone captured the emissions at two different angles. In both the simulation and the experiments, one angle captured periodic time-domain signals, which had high contributions from the first three harmonics. In contrast, the other angle captured visually aperiodic time-domain features, which had much higher harmonic and broadband content. Thus, by placing acoustic sensors at different positions, substantially different acoustic emissions were captured, potentially leading to very different conclusions about the treatment outcome.

1.
Allen
,
J. S.
,
Kruse
,
D. E.
,
Dayton
,
P. A.
, and
Ferrara
,
K. W.
(
2003
). “
Effect of coupled oscillations on microbubble behavior
,”
J. Acoust. Soc. Am.
114
,
1678
1690
.
2.
Ammi
,
A.
,
Cleveland
,
R.
,
Mamou
,
J.
,
Wang
,
G.
,
Bridal
,
S.
, and
Obrien
,
W.
(
2006
). “
Ultrasonic contrast agent shell rupture detected by inertial cavitation and rebound signals
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
53
,
126
136
.
3.
Arora
,
M.
,
Ohl
,
C. D.
, and
Lohse
,
D.
(
2007
). “
Effect of nuclei concentration on cavitation cluster dynamics
,”
J. Acoust. Soc. Am.
121
(
6
),
3432
3436
.
4.
Arvanitis
,
C. D.
,
Vykhodtseva
,
N.
,
Jolesz
,
F.
,
Livingstone
,
M.
, and
McDannold
,
N.
(
2016
). “
Cavitation-enhanced nonthermal ablation in deep brain targets: Feasibility in a large animal model
,”
J. Neurosurg.
124
(
5
),
1450
1459
.
5.
Aryal
,
M.
,
Arvanitis
,
C. D.
,
Alexander
,
P. M.
, and
McDannold
,
N.
(
2014
). “
Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system
,”
Adv. Drug. Delivery Rev.
72
,
94
109
.
6.
Auboire
,
L.
,
Sennoga
,
C. A.
,
Hyvelin
,
J.-M.
,
Ossant
,
F.
,
Escoffre
,
J.-M.
,
Tranquart
,
F.
, and
Bouakaz
,
A.
(
2018
). “
Microbubbles combined with ultrasound therapy in ischemic stroke: A systematic review of in-vivo preclinical studies
,”
PLoS One
13
(
2
),
e0191788
.
7.
Bao
,
S.
,
Thrall
,
B. D.
, and
Miller
,
D. L.
(
1997
). “
Transfection of a reporter plasmid into cultured cells by sonoporation in vitro
,”
Ultrasound Med. Biol.
23
,
953
959
.
8.
Brujan
,
E. A.
,
Ikeda
,
T.
, and
Matsumoto
,
Y.
(
2012
). “
Shock wave emission from a cloud of bubbles
,”
Soft Matter
8
(
21
),
5777
5783
.
9.
Burke
,
C. W.
,
Klibanov
,
A. L.
,
Sheehan
,
J. P.
, and
Price
,
R. J.
(
2011
). “
Inhibition of glioma growth by microbubble activation in a subcutaneous model using low duty cycle ultrasound without significant heating
,”
J. Neurosurg.
114
,
1654
1661
.
10.
Calvisi
,
M. L.
,
Lindau
,
O.
,
Blake
,
J. R.
, and
Szeri
,
A. J.
(
2007
). “
Shape stability and violent collapse of microbubbles in acoustic traveling waves
,”
Phys. Fluids
19
,
047101
.
11.
Chang
,
P.
,
Chen
,
W.
,
Mourad
,
P.
,
Poliachik
,
S.
, and
Crum
,
L.
(
2001
). “
Thresholds for inertial cavitation in Albunex suspensions under pulsed ultrasound conditions
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
48
(
1
),
161
170
.
12.
Chen
,
C.
,
Gu
,
Y.
,
Tu
,
J.
,
Guo
,
X.
, and
Zhang
,
D.
(
2016
). “
Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study
,”
Ultrasonics
66
,
54
64
.
13.
Chen
,
H.
,
Brayman
,
A. A.
,
Kreider
,
W.
,
Bailey
,
M. R.
, and
Matula
,
T. J.
(
2011
). “
Observations of translation and jetting of ultrasound-activated microbubbles in mesenteric microvessels
,”
Ultrasound Med. Biol.
37
,
2139
2148
.
14.
Chen
,
W.-S.
,
Brayman
,
A. A.
,
Matula
,
T. J.
, and
Crum
,
L. A.
(
2003
). “
Inertial cavitation dose and hemolysis produced in vitro with or without Optison®
,”
Ultrasound Med. Biol.
29
,
725
737
.
15.
Choi
,
J. J.
,
Selert
,
K.
,
Gao
,
Z.
,
Samiotaki
,
G.
,
Baseri
,
B.
, and
Konofagou
,
E. E.
(
2011
). “
Noninvasive and localized blood—Brain barrier disruption using focused ultrasound can be achieved at short pulse lengths and low pulse repetition frequencies
,”
J. Cereb. Blood Flow Metab.
31
,
725
737
.
16.
Chomas
,
J. E.
,
Dayton
,
P.
,
May
,
D.
, and
Ferrara
,
K.
(
2001
). “
Threshold of fragmentation for ultrasonic contrast agents
,”
J. Biomed. Opt.
6
,
141
150
.
17.
Chong
,
K.
,
Quek
,
C.
,
Dzaharudin
,
F.
,
Ooi
,
A.
, and
Manasseh
,
R.
(
2010
). “
The effects of coupling and bubble size on the dynamical-systems behaviour of a small cluster of microbubbles
,”
J. Sound Vib.
329
,
687
699
.
18.
Clarke
,
R.
, and
Haar
,
G. T.
(
1997
). “
Temperature rise recorded during lesion formation by high-intensity focused ultrasound
,”
Ultrasound Med. Biol.
23
,
299
306
.
19.
Culp
,
W. C.
,
Erdem
,
E.
,
Roberson
,
P. K.
, and
Husain
,
M. M.
(
2003
). “
Microbubble potentiated ultrasound as a method of stroke therapy in a pig model: Preliminary findings
,”
J. Vasc. Interv. Radiol.
14
,
1433
1436
.
20.
Dayton
,
P.
,
Morgan
,
K.
,
Klibanov
,
A.
,
Brandenburger
,
G.
,
Nightingale
,
K.
, and
Ferrara
,
K.
(
1997
). “
A preliminary evaluation of the effects of primary and secondary radiation forces on acoustic contrast agents
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
44
,
1264
1277
.
21.
Dayton
,
P. A.
,
Allen
,
J. S.
, and
Ferrara
,
K. W.
(
2002
). “
The magnitude of radiation force on ultrasound contrast agents
,”
J. Acoust. Soc. Am.
112
(
5
),
2183
2192
.
22.
Dayton
,
P. A.
,
Chomas
,
J. E.
,
Lum
,
A. F.
,
Allen
,
J. S.
,
Lindner
,
J. R.
,
Simon
,
S. I.
, and
Ferrara
,
K. W.
(
2001
). “
Optical and acoustical dynamics of microbubble contrast agents inside neutrophils
,”
Biophys. J.
80
,
1547
1556
.
23.
Doinikov
,
A. A.
(
2000
). “
Influence of neighboring bubbles on the primary Bjerknes force acting on a small cavitation bubble in a strong acoustic field
,”
Phys. Rev. E
62
(
5
),
7516
7519
.
24.
Doinikov
,
A. A.
,
Aired
,
L.
, and
Bouakaz
,
A.
(
2011
). “
Acoustic scattering from a contrast agent microbubble near an elastic wall of finite thickness
,”
Phys. Med. Biol.
56
(
21
),
6951
6967
.
25.
Dollet
,
B.
,
Meer
,
S. M. V. D.
,
Garbin
,
V.
,
Jong
,
N. D.
,
Lohse
,
D.
, and
Versluis
,
M.
(
2008
). “
Nonspherical oscillations of ultrasound contrast agent microbubbles
,”
Ultrasound Med. Biol.
34
,
1465
1473
.
26.
Dzaharudin
,
F.
,
Suslov
,
S. A.
,
Manasseh
,
R.
, and
Ooi
,
A.
(
2013
). “
Effects of coupling, bubble size, and spatial arrangement on chaotic dynamics of microbubble cluster in ultrasonic fields
,”
J. Acoust. Soc. Am.
134
,
3425
3434
.
27.
Fuster
,
D.
, and
Colonius
,
T.
(
2011
). “
Modelling bubble clusters in compressible liquids
,”
J. Fluid. Mech.
688
,
352
389
.
28.
Haghi
,
H.
,
Sojahrood
,
A.
, and
Kolios
,
M. C.
(
2019
). “
Collective nonlinear behavior of interacting polydisperse microbubble clusters
,”
Ultrason. Sonochem.
58
,
104708
.
29.
Heckman
,
C.
,
Sah
,
S.
, and
Rand
,
R.
(
2010
). “
Dynamics of microbubble oscillators with delay coupling
,”
Commun. Nonlinear Sci. Numer. Simul.
15
,
2735
2743
.
30.
Helfield
,
B.
,
Black
,
J. J.
,
Qin
,
B.
,
Pacella
,
J.
,
Chen
,
X.
, and
Villanueva
,
F. S.
(
2016
). “
Fluid viscosity affects the fragmentation and inertial cavitation threshold of lipid-encapsulated microbubbles
,”
Ultrasound Med. Biol.
42
(
3
),
782
794
.
31.
Holt
,
R.
, and
Roy
,
R. A.
(
2001
). “
Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material
,”
Ultrasound Med. Biol.
27
,
1399
1412
.
32.
Hynynen
,
K.
(
1991
). “
The role of nonlinear ultrasound propagation during hyperthermia treatments
,”
Med. Phys.
18
,
1156
1163
.
33.
Hynynen
,
K.
,
McDannold
,
N.
,
Vykhodtseva
,
N.
, and
Jolesz
,
F. A.
(
2001
). “
Noninvasive MR imaging–guided focal opening of the blood-brain barrier in rabbits
,”
Radiology
220
,
640
646
.
34.
Ilovitsh
,
T.
,
Ilovitsh
,
A.
,
Foiret
,
J.
,
Caskey
,
C. F.
,
Kusunose
,
J.
,
Fite
,
B. Z.
,
Zhang
,
H.
,
Mahakian
,
L.
,
Tam
,
S.
,
Butts-Pauly
,
K.
,
Qin
,
S.
, and
Ferrara
,
K. W.
(
2018
). “
Enhanced microbubble contrast agent oscillation following 250 kHz insonation
,”
Sci. Rep.
8
,
16347
.
35.
Johansen
,
K.
,
Song
,
J. H.
,
Johnston
,
K.
, and
Prentice
,
P.
(
2017
). “
Deconvolution of acoustically detected bubble-collapse shock waves
,”
Ultrasonics
73
,
144
153
.
36.
Jones
,
R. M.
,
Deng
,
L.
,
Leung
,
K.
,
McMahon
,
D.
,
O'Reilly
,
M. A.
, and
Hynynen
,
K.
(
2018
). “
Three-dimensional transcranial microbubble imaging for guiding volumetric ultrasound-mediated blood-brain barrier opening
,”
Theranostics
8
,
2909
2926
.
37.
Kamimura
,
H. A. S.
,
Flament
,
J.
,
Valette
,
J.
,
Cafarelli
,
A.
,
Badin
,
R. A.
,
Hantraye
,
P.
, and
Larrat
,
B.
(
2019
). “
Feedback control of microbubble cavitation for ultrasound-mediated blood–brain barrier disruption in non-human primates under magnetic resonance guidance
,”
J. Cereb. Blood Flow Metab.
39
,
1191
1203
.
38.
Kim
,
Y.
,
Hall
,
T. L.
,
Xu
,
Z.
, and
Cain
,
C. A.
(
2014
). “
Transcranial histotripsy therapy: A feasibility study
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
61
,
582
593
.
39.
King
,
D. A.
, and
O'Brien
,
W. D.
(
2011
). “
Comparison between maximum radial expansion of ultrasound contrast agents and experimental postexcitation signal results
,”
J. Acoust. Soc. Am.
129
,
114
121
.
40.
Konofagou
,
E. E.
(
2012
). “
Optimization of the ultrasound-induced blood-brain barrier opening
,”
Theranostics
2
,
1223
1237
.
41.
Lazarus
,
C.
,
Pouliopoulos
,
A. N.
,
Tinguely
,
M.
,
Garbin
,
V.
, and
Choi
,
J. J.
(
2017
). “
Clustering dynamics of microbubbles exposed to low-pressure 1-MHz ultrasound
,”
J. Acoust. Soc. Am.
142
(
5
),
3135
3146
.
42.
Leighton
,
T. G.
,
White
,
P. R.
,
Morfey
,
C. L.
,
Clarke
,
J. W. L.
,
Heald
,
G. J.
,
Dumbrell
,
H. A.
, and
Holland
,
K. R.
(
2002
). “
The effect of reverberation on the damping of bubbles
,”
J. Acoust. Soc. Am.
112
,
1366
1376
.
43.
Lindsey
,
B. D.
,
Rojas
,
J. D.
, and
Dayton
,
P. A.
(
2015
). “
On the relationship between microbubble fragmentation, deflation and broadband superharmonic signal production
,”
Ultrasound Med. Biol.
41
(
6
),
1711
1725
.
44.
Lipsman
,
N.
,
Meng
,
Y.
,
Bethune
,
A. J.
,
Huang
,
Y.
,
Lam
,
B.
,
Masellis
,
M.
,
Herrmann
,
N.
,
Heyn
,
C.
,
Aubert
,
I.
,
Foutet
,
A.
,
Smith
,
G. S.
,
Hynynen
,
K.
, and
Glack
,
S. E.
(
2018
). “
Blood–brain barrier opening in Alzheimer's disease using MR-guided focused ultrasound
,”
Nat. Commun
9
,
2336
.
45.
Longuet-Higgins
,
M. S.
(
1989
). “
Monopole emission of sound by asymmetric bubble oscillations. Part 1. Normal modes
,”
J. Fluid. Mech.
201
,
525
541
.
46.
Louisnard
,
O.
(
2008
). “
Analytical expressions for primary Bjerknes force on inertial cavitation bubbles
,”
Phys. Rev. E
78
(
3
),
036322
.
47.
Luo
,
W.
,
Zhou
,
X.
,
Tian
,
X.
,
Ren
,
X.
,
Zheng
,
M.
,
Gu
,
K.
, and
He
,
G.
(
2006
). “
Enhancement of ultrasound contrast agent in high-intensity focused ultrasound ablation
,”
Adv. Ther.
23
,
861
868
.
48.
Macdonald
,
C. A.
, and
Gomatam
,
J.
(
2006
). “
Chaotic dynamics of microbubbles in ultrasonic fields
,”
Proc. Inst. Mech. Eng., Part C
220
,
333
343
.
49.
Maeda
,
K.
, and
Colonius
,
T.
(
2019
). “
Bubble cloud dynamics in an ultrasound field
,”
J. Fluid. Mech.
862
,
1105
1134
.
50.
Manasseh
,
R.
,
Nikolovska
,
A.
,
Ooi
,
A.
, and
Yoshida
,
S.
(
2004
). “
Anisotropy in the sound field generated by a bubble chain
,”
J. Sound Vib.
278
(
4-5
),
807
823
.
51.
Marmottant
,
P.
,
Meer
,
S. V. D.
,
Emmer
,
M.
,
Versluis
,
M.
,
Jong
,
N. D.
,
Hilgenfeldt
,
S.
, and
Lohse
,
D.
(
2005
). “
A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture
,”
J. Acoust. Soc. Am.
118
,
3499
3505
.
52.
Matsumoto
,
Y.
, and
Yoshizawa
,
S.
(
2005
). “
Behaviour of a bubble cluster in an ultrasound field
,”
Int. J. Numer. Methods Fluids
47
(
6-7
),
591
601
.
53.
McDannold
,
N.
,
Zhang
,
Y. Z.
,
Power
,
C.
,
Jolesz
,
F.
, and
Vykhodtseva
,
N.
(
2013
). “
Nonthermal ablation with microbubble-enhanced focused ultrasound close to the optic tract without affecting nerve function
,”
J. Neurosurg.
119
,
1208
1220
.
54.
McMahon
,
D.
,
Poon
,
C.
, and
Hynynen
,
K.
(
2019
). “
Evaluating the safety profile of focused ultrasound and microbubble-mediated treatments to increase blood-brain barrier permeability
,”
Expert Opin. Drug Delivery
16
,
129
142
.
55.
Meng
,
L.
,
Liu
,
X.
,
Wang
,
Y.
,
Zhang
,
W.
,
Zhou
,
W.
,
Cai
,
F.
,
Li
,
F.
,
Wu
,
J.
,
Xu
,
L. N.
, and
Zheng
,
H.
(
2019
). “
Sonoporation of cells by a parallel stable cavitation microbubble array
,”
Adv. Sci.
6
,
1900557
.
56.
Morse
,
S. V.
,
Pouliopoulos
,
A. N.
,
Chan
,
T. G.
,
Copping
,
M. J.
,
Lin
,
J.
,
Long
,
N. J.
, and
Choi
,
J. J.
(
2019
). “
Rapid short-pulse ultrasound delivers drugs uniformly across the murine blood-brain barrier with negligible disruption
,”
Radiology
291
,
459
466
.
57.
Ooi
,
A.
,
Nikolovska
,
A.
, and
Manasseh
,
R.
(
2008
). “
Analysis of time delay effects on a linear bubble chain system
,”
J. Acoust. Soc. Am.
124
(
2
),
815
826
.
58.
O'Reilly
,
M. A.
, and
Hynynen
,
K.
(
2012
). “
Blood-brain barrier: Real-time feedback-controlled focused ultrasound disruption by using an acoustic emissions–based controller
,”
Radiology
263
,
96
106
.
59.
O'Reilly
,
M. A.
,
Waspe
,
A. C.
,
Ganguly
,
M.
, and
Hynynen
,
K.
(
2011
). “
Focused-ultrasound disruption of the blood-brain barrier using closely-timed short pulses: Influence of sonication parameters and injection rate
,”
Ultrasound Med. Biol.
37
,
587
594
.
60.
Pahk
,
K. J.
,
Gélat
,
P.
,
Kim
,
H.
, and
Saffari
,
N.
(
2018
). “
Bubble dynamics in boiling histotripsy
,”
Ultrasound Med. Biol.
44
,
2673
2696
.
61.
Pouliopoulos
,
A. N.
,
Bonaccorsi
,
S.
, and
Choi
,
J. J.
(
2014
). “
Exploiting flow to control the in vitro spatiotemporal distribution of microbubble-seeded acoustic cavitation activity in ultrasound therapy
,”
Phys. Med. Biol.
59
,
6941
6957
.
62.
Pouliopoulos
,
A. N.
, and
Choi
,
J. J.
(
2016
). “
Superharmonic microbubble Doppler effect in ultrasound therapy
,”
Phys. Med. Biol.
61
,
6154
6171
.
63.
Santin
,
M. D.
,
King
,
D. A.
,
Foiret
,
J.
,
Haak
,
A.
,
O'Brien
,
W. D.
, and
Bridal
,
S. L.
(
2010
). “
Encapsulated contrast microbubble radial oscillation associated with postexcitation pressure peaks
,”
J. Acoust. Soc. Am.
127
,
1156
1164
.
64.
Santos
,
M. A.
,
Wu
,
S.-K.
,
Li
,
Z.
,
Goertz
,
D. E.
, and
Hynynen
,
K.
(
2018
). “
Microbubble-assisted MRI-guided focused ultrasound for hyperthermia at reduced power levels
,”
Int. J. Hyperthermia
35
,
599
611
.
65.
Shi
,
W. T.
,
Forsberg
,
F.
,
Tornes
,
A.
,
Østensen
,
J.
, and
Goldberg
,
B. B.
(
2000
). “
Destruction of contrast microbubbles and the association with inertial cavitation
,”
Ultrasound Med. Biol.
26
,
1009
1019
.
66.
Sijl
,
J.
,
Dollet
,
B.
,
Overvelde
,
M.
,
Garbin
,
V.
,
Rozendal
,
T.
,
Jong
,
N. D.
,
Lohse
,
D.
, and
Versluis
,
M.
(
2010
). “
Subharmonic behavior of phospholipid-coated ultrasound contrast agent microbubbles
,”
J. Acoust. Soc. Am.
128
,
3239
3252
.
67.
Sijl
,
J.
,
Vos
,
H. J.
,
Rozendal
,
T.
,
Jong
,
N. D.
,
Lohse
,
D.
, and
Versluis
,
M.
(
2011
). “
Combined optical and acoustical detection of single microbubble dynamics
,”
J. Acoust. Soc. Am.
130
,
3271
3281
.
68.
Sojahrood
,
A. J.
,
Li
,
Q.
,
Haghi
,
H.
,
Karshafian
,
R.
,
Porter
,
T. M.
, and
Kolios
,
M. C.
(
2017
). “
Investigation of the nonlinear propagation of ultrasound through a bubbly medium including multiple scattering and bubble-bubble interaction: Theory and experiment
,” in
2017 IEEE International Ultrasonics Symposium (IUS)
.
69.
Soltani
,
A.
,
Singhal
,
R.
,
Obtera
,
M.
,
Roy
,
R. A.
,
Clark
,
W. M.
, and
Hansmann
,
D. R.
(
2011
). “
Potentiating intra-arterial sonothrombolysis for acute ischemic stroke by the addition of the ultrasound contrast agents (Optison™ & SonoVue®)
,”
J. Thromb. Thrombolysis
31
,
71
84
.
70.
Song
,
J. H.
,
Johansen
,
K.
, and
Prentice
,
P.
(
2016
). “
An analysis of the acoustic cavitation noise spectrum: The role of periodic shock waves
,”
J. Acoust. Soc. Am.
140
,
2494
2505
.
71.
Song
,
K.-H.
,
Harvey
,
B. K.
, and
Borden
,
M. A.
(
2018
). “
State-of-the-art of microbubble-assisted blood-brain barrier disruption
,”
Theranostics
8
,
4393
4408
.
72.
Sun
,
T.
,
Samiotaki
,
G.
,
Wang
,
S.
,
Acosta
,
C.
,
Chen
,
C. C.
, and
Konofagou
,
E. E.
(
2015
). “
Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening
,”
Phys. Med. Biol.
60
,
9079
9094
.
73.
Tsai
,
H.-C.
,
Tsai
,
C.-H.
,
Chen
,
W.-S.
,
Inserra
,
C.
,
Wei
,
K.-C.
, and
Liu
,
H.-L.
(
2018
). “
Safety evaluation of frequent application of microbubble-enhanced focused ultrasound blood-brain-barrier opening
,”
Sci. Rep.
8
,
1
13
.
74.
Tse
,
J. R.
, and
Engler
,
A. J.
(
2010
). “
Preparation of hydrogel substrates with tunable mechanical properties
,”
Curr. Protoc. Cell Biol.
47
,
10
16
.
75.
Vokurka
,
K.
(
1985
). “
On Rayleighs model of a freely oscillating bubble. I. Basic relations,” Czech
.
J. Phys.
35
,
28
40
.
76.
Yang
,
Y.
,
Zhang
,
X.
,
Ye
,
D.
,
Laforest
,
R.
,
Williamson
,
J.
,
Liu
,
Y.
, and
Chen
,
H.
(
2019
). “
Cavitation dose painting for focused ultrasound-induced blood-brain barrier disruption
,”
Sci. Rep.
9
,
1
10
.
77.
Yasui
,
K.
,
Lee
,
J.
,
Tuziuti
,
T.
,
Towata
,
A.
,
Kozuka
,
T.
, and
Iida
,
Y.
(
2009
). “
Influence of the bubble-bubble interaction on destruction of encapsulated microbubbles under ultrasound
,”
J. Acoust. Soc. Am.
126
(
3
),
973
982
.
78.
Yoshizawa
,
S.
,
Ikeda
,
T.
,
Takagi
,
S.
, and
Matsumoto
,
Y.
(
2004
). “
Nonlinear ultrasound propagation in a spherical bubble cloud
,” in
IEEE Ultrasonics Symposium, 2004
.
79.
Zivaripiran
,
H.
, and
Enright
,
W. H.
(
2009
). “
An efficient unified approach for the numerical solution of delay differential equations
,”
Numer. Algorithms
53
,
397
417
.
You do not currently have access to this content.