This paper presents an inversion methodology where acoustic observations of infrasound waves are used to update an atmospheric model. This paper sought a flexible parameterization that permits to incorporate physical and numerical constraints without the need to reformulate the inversion. On the other hand, the optimization conveys an explicit search over the solution space, making the solver computationally expensive. Nevertheless, through a parallel implementation and the use of tight constraints, this study demonstrates that the methodology is computationally tractable. Constraints to the solution space are derived from the spread (variance) of ERA5 ensemble reanalysis members, which summarize the best current knowledge of the atmosphere from assimilated measurements and physical models. Similarly, the initial model temperature and winds for the inversion are chosen to be the average of these parameters in the ensemble members. The performance of the inversion is demonstrated with the application to infrasound observations from an explosion generated by the destruction of ammunition at Hukkakero, Finland. The acoustic signals are recorded at an array station located at 178 km range, which is within the classical shadow zone distance. The observed returns are assumed to come from stratospheric reflections. Thus, the reflection altitude is also an inverted parameter.

1.
Amezcua
,
J.
,
Näsholm
,
S.
,
Blixt
,
E.
, and
Charlton-Perez
,
A.
(
2020
). “
Assimilation of atmospheric infrasound data to constrain tropospheric and stratospheric winds
,”
Q. J. R. Meteorol. Soc.
146
,
1
20
.
2.
Arrowsmith
,
S. J.
,
Marcillo
,
O.
, and
Drob
,
D. P.
(
2013
). “
A framework for estimating stratospheric wind speeds from unknown sources and application to the 2010 December 25 bolide
,”
Geophys. J. Int.
195
(
1
),
491
503
.
3.
Assink
,
J.
,
Smets
,
P.
,
Marcillo
,
O.
,
Weemstra
,
C.
,
Lalande
,
J.
,
Waxler
,
R.
, and
Evers
,
L.
(
2019
). “
Advances in infrasonic remote sensing methods
,” in
Infrasound Monitoring for Atmospheric Studies
, 2nd ed., edited by
A.
Le Pichon
,
E.
Blanc
, and
A.
Huachecorne
(
Springer International Publishing
,
New York
), pp.
605
632
.
4.
Assink
,
J.
,
Waxler
,
R.
,
Frazier
,
W.
, and
Lonzaga
,
J.
(
2013
). “
The estimation of upper atmospheric wind model updates from infrasound data
,”
J. Geophys. Res.
118
,
1
18
, .
5.
Averbuch
,
G.
,
Waxler
,
R.
,
Smets
,
P.
, and
Evers
,
L.
(
2020
). “
Probabilistic inversion for submerged source depth and strength from infrasound observations
,”
J. Acoust. Soc. Am.
147
(
2
),
1066
1077
.
6.
Blanc
,
E.
,
Ceranna
,
L.
,
Hauchecorne
,
A.
,
Charlton-Perez
,
A.
,
Marchetti
,
E.
,
Evers
,
L.
,
Kvaerna
,
T.
,
Lastovicka
,
J.
,
Eliasson
,
L.
,
Crosby
,
N.
,
Blanc-Benon
,
P.
,
Le Pichon
,
A.
,
Brachet
,
N.
,
Pilger
,
C.
,
Keckhut
,
P.
,
Assink
,
J.
,
Smets
,
P. M.
,
Lee
,
C.
,
Kero
,
J.
,
Sindelarova
,
T.
,
Kämpfer
,
N.
,
Rüfenacht
,
R.
,
Farges
,
T.
,
Millet
,
C.
,
Näsholm
,
S.
,
Gibbons
,
S.
,
Espy
,
P.
,
Hibbins
,
R.
,
Heinrich
,
P.
,
Ripepe
,
M.
,
Khaykin
,
S.
,
Mze
,
N.
, and
Chum
,
J.
(
2018
). “
Toward an improved representation of middle atmospheric dynamics thanks to the ARISE project
,”
Surveys Geophys.
39
(
2
),
171
225
.
7.
Blanc
,
E.
,
Pol
,
K.
,
Le Pichon
,
A.
,
Hauchecorne
,
A.
,
Keckhut
,
P.
,
Baumgarten
,
G.
,
Hildebrand
,
J.
,
Höffner
,
J.
,
Stober
,
G.
,
Hibbins
,
R.
,
Espy
,
P.
,
Rapp
,
M.
,
Kaifler
,
B.
,
Ceranna
,
L.
,
Hupe
,
P.
,
Hagen
,
J.
,
Rüfenacht
,
R.
,
Kämpfer
,
N.
, and
Smets
,
P.
(
2019
). “
Middle atmosphere variability and model uncertainties as investigated in the framework of the arise project
,” in
Infrasound Monitoring for Atmospheric Studies
(
Springer
,
New York
), pp.
845
887
.
8.
Blixt
,
E.
,
Näsholm
,
P.
,
Gibbons
,
S.
,
Evers
,
L.
,
Charlton-Perez
,
A.
,
Orsolini
,
Y.
, and
Kværna
,
T.
(
2019
). “
Estimating tropospheric and stratospheric winds using infrasound from explosions
,”
J. Acoust. Soc. Am.
146
,
973
982
.
9.
Blom
,
P.
, and
Marcillo
,
O.
(
2017
). “
An optimal parametrization framework for infrasonic tomography of the stratospheric winds using non-local sources
,”
Geophys. J. Int.
208
(
3
),
1557
1566
.
10.
Blom
,
P.
, and
Waxler
,
R.
(
2012
). “
Impulse propagation in the nocturnal boundary layer: Analysis of the geometric component
,”
J. Acoust. Soc. Am.
131
(
5
),
3680
3690
.
11.
Blom
,
P.
, and
Waxler
,
R.
(
2017
). “
Modeling and observations of an elevated, moving infrasonic source: Eigenray methods
,”
J. Acoust. Soc. Am.
141
(
4
),
2681
2692
.
12.
Charlton-Perez
,
A.
,
Baldwin
,
M.
,
Birner
,
T.
,
Black
,
R.
,
Butler
,
A.
,
Calvo
,
N.
,
Davis
,
N.
,
Gerber
,
E.
,
Gillett
,
N.
,
Hardiman
,
S.
,
Kim
,
J.
,
Krüger
,
K.
,
Lee
,
Y.
,
Manzini
,
E.
,
McDaniel
,
B.
,
Polvani
,
L.
,
Reichler
,
T.
,
Shaw
,
T.
,
Sigmond
,
M.
,
Son
,
S.
,
Toohey
,
M.
,
Wilcox
,
L.
,
Yoden
,
S.
,
Christiansen
,
B.
,
Lott
,
F.
,
Shindell
,
D.
,
Yukimoto
,
S.
, and
Watanabe
,
S.
(
2013
). “
On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models
,”
J. Geophys. Res. Atmos.
118
(
6
),
2494
2505
, .
13.
Chunchuzov
,
I.
, and
Kulichkov
,
S.
(
2019
). “
Internal gravity wave perturbations and their impacts on infrasound propagation in the atmosphere
,” in
Infrasound Monitoring for Atmospheric Studies
, 2nd ed., edited by
A.
Le Pichon
,
E.
Blanc
, and
A.
Huachecorne
(
Springer International Publishing
,
New York)
, pp.
551
590
.
14.
Chunchuzov
,
I.
,
Kulichkov
,
S.
,
Perepelkin
,
V.
,
Popov
,
O.
,
Firstov
,
P.
,
Assink
,
J.
, and
Marchetti
,
E.
(
2015a
). “
Study of the wind velocity-layered structure in the stratosphere, mesosphere, and lower thermosphere by using infrasound probing of the atmosphere
,”
J. Geophys. Res. Atmos.
120
(
17
),
8828
8840
, .
15.
Chunchuzov
,
I.
,
Kulichkov
,
S.
,
Popov
,
O.
,
Perepelkin
,
V.
,
Vasil-ev
,
A.
,
Glushkov
,
A.
, and
Firstov
,
P.
(
2015b
). “
Characteristics of a fine vertical wind-field structure in the stratosphere and lower thermosphere according to infrasonic signals in the zone of acoustic shadow
,”
Izvestiya Atmos. Oceanic Phys.
51
,
57
74
.
16.
C3S
(
2017
). “
ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), March 2020
,” https://cds.climate.copernicus.eu/ (Last viewed 10 August 2020).
17.
Dahlman
,
O.
,
Mykkeltveit
,
S.
, and
Haak
,
H.
(
2009
).
Nuclear Test Ban: Converting Political Visions to Reality
(
Springer Science & Business Media
,
New York
).
18.
Domeisen
,
D.
,
Butler
,
A.
,
Charlton-Perez
,
A.
,
Ayarzagüena
,
B.
,
Baldwin
,
M.
,
Dunn-Sigouin
,
E.
,
Furtado
,
J.
,
Garfinkel
,
C.
,
Hitchcock
,
P.
,
Karpechko
,
A.
,
Kim
,
H.
,
Knight
,
J.
,
Lang
,
A.
,
Lim
,
E.
,
Marshall
,
A.
,
Roff
,
G.
,
Schwartz
,
C.
,
Simpson
,
I.
,
Son
,
S.
, and
Taguchi
,
M.
(
2020a
). “
The role of the stratosphere in subseasonal to seasonal prediction: 1. Predictability of the stratosphere
,”
J. Geophys. Res. Atmos.
125
(
2
),
1
17
, .
19.
Domeisen
,
D.
,
Butler
,
A.
,
Charlton-Perez
,
A.
,
Ayarzagüena
,
B.
,
Baldwin
,
M.
,
Dunn-Sigouin
,
E.
,
Furtado
,
J.
,
Garfinkel
,
C.
,
Hitchcock
,
P.
,
Karpechko
,
A.
,
Kim
,
H.
,
Knight
,
J.
,
Lang
,
A.
,
Lim
,
E.
,
Marshall
,
A.
,
Roff
,
G.
,
Schwartz
,
C.
,
Simpson
,
I.
,
Son
,
S.
, and
Taguchi
,
M.
(
2020b
). “
The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere-troposphere coupling
,”
J. Geophys. Res. Atmos.
125
(
2
),
1
20
, .
20.
Drob
,
D.
(
2019
). “
Meteorology, climatology, and upper atmospheric composition for infrasound propagation modeling
,” in
Infrasound Monitoring for Atmospheric Studies
, 2nd ed., edited by
A.
Le Pichon
,
E.
Blanc
, and
A.
Huachecorne
(
Springer International Publishing
,
New York
), pp.
485
508
.
21.
Drob
,
D.
,
Meier
,
R.
,
Picone
,
J.
, and
Garcés
,
M.
(
2010
). “
Inversion of infrasound signals for passive atmospheric remote sensing
,” in
Infrasound Monitoring for Atmospheric Studies
, 1st ed., edited by
A.
Le Pichon
,
E.
Blanc
, and
A.
Huachecorne
(
Springer International Publishing
,
New York
), pp.
701
732
.
22.
Ehard
,
B.
,
Malardel
,
S.
,
Dörnbrack
,
A.
,
Kaifler
,
B.
,
Kaifler
,
N.
, and
Wedi
,
N.
(
2017
). “
Comparing ECMWF high-resolution analyses to lidar temperature measurements in the middle atmosphere
,”
Q. J. R. Meteorol. Soc.
144
(
712
),
633
640
.
23.
Gibbons
,
S.
,
Asming
,
V.
,
Eliasson
,
L.
,
Fedorov
,
A.
,
Fyen
,
J.
,
Kero
,
J.
,
Kozlovskaya
,
E.
,
Kværna
,
T.
,
Liszka
,
L.
,
Näsholm
,
P.
,
Raita
,
T.
,
Roth
,
M.
,
Tiira
,
T.
, and
Vinogradov
,
Y.
(
2015
). “
The European Arctic: A laboratory for seismoacoustic studies
,”
Seismol. Res. Lett.
86
(
3
),
917
928
.
24.
Gibbons
,
S.
,
Kværna
,
T.
, and
Näsholm
,
S.
(
2019
). “
Characterization of the infrasonic wavefield from repeating seismo-acoustic events
,” in
Infrasound Monitoring for Atmospheric Studies
(
Springer
,
New York
), pp.
387
407
.
25.
Gibbons
,
S.
,
Ringdal
,
F.
, and
Kværna
,
T.
(
2007
). “
Joint seismic-infrasonic processing of recordings from a repeating source of atmospheric explosions
,”
J. Acoust. Soc. Am.
122
(
5
),
EL158
EL164
.
26.
Hersbach
,
H.
,
Bell
,
B.
,
Berrisford
,
P.
,
Hirahara
,
S.
,
Horanyi
,
A.
,
Muñoz-Sabater
,
J.
,
Nicolas
,
J.
,
Peubey
,
C.
,
Radu
,
R.
,
Schepers
,
D.
,
Simmons
,
A.
,
Soci
,
C.
,
Abdalla
,
S.
,
Abellan
,
X.
,
Balsamo
,
G.
,
Bechtold
,
P.
,
Biavati
,
G.
,
Bidlot
,
J.
,
Bonavita
,
M.
,
De Chiara
,
G.
,
Dahlgren
,
P.
,
Dee
,
D.
,
Diamantakis
,
M.
,
Dragani
,
R.
,
Flemming
,
J.
,
Forbes
,
R.
,
Fuentes
,
M.
,
Geer
,
A.
,
Haimberger
,
L.
,
Healy
,
S.
,
Hogan
,
R.
,
Hólm
,
E.
,
Janisková
,
M.
,
Keeley
,
S.
,
Laloyaux
,
P.
,
Lopez
,
P.
,
Lupu
,
C.
,
Radnoti
,
G.
,
de Rosnay
,
P.
,
Rozum
,
I.
,
Vamborg
,
F.
,
Villaume
,
S.
, and
Thépaut
,
J.
(
2020
). “
The ERA5 global reanalysis
,”
Q. J. R. Meteorol. Soc.
146
(
730
),
1999
2049
.
27.
Hersbach
,
H.
,
Bell
,
B.
,
Berrisford
,
P.
,
Horányi
,
A.
,
Muñoz Sabater
,
J.
,
Nicolas
,
J.
,
Radu
,
R.
,
Schepers
,
D.
,
Simmons
,
A.
,
Soci
,
C.
, and
Dee
,
D.
(
2019
). “
Global reanalysis: Goodbye ERA-interim, hello ERA5
,”
ECMWF Newslett.
159
,
17
24
.
28.
Hersbach
,
H.
, and
Dee
,
D.
(
2016
). “
ERA5 reanalysis is in production
,”
ECMWF Newslett.
147
,
7
.
29.
Hupe
,
P.
,
Ceranna
,
L.
,
Pilger
,
C.
,
de Carlo
,
M.
,
Le Pichon
,
A.
,
Kaifler
,
B.
, and
Rapp
,
M.
(
2019
). “
Assessing middle atmosphere weather models using infrasound detections from microbaroms
,”
Geophys. J. Int.
216
(
3
),
1761
1767
.
30.
Kazutoshi
,
O.
,
Junichi
,
T.
,
Hiroshi
,
K.
,
Masami
,
S.
,
Shinya
,
K.
,
Hiroaki
,
H.
,
Takanori
,
M.
,
Nobuo
,
Y.
,
Hirotaka
,
K.
,
Kiyotosh
,
T.
,
Shinji
,
K.
,
Koji
,
W.
,
Koji
,
K.
,
Ryo
,
O.
,
Tomoaki
,
O. S. E.
,
Nobutaka
,
M.
, and
Ryusuke
,
T.
(
2007
). “
The JRA-25 reanalysis
,”
J. Meteorol. Soc. Jpn. Ser. II
85
(
3
),
369
432
.
31.
Khaykin
,
S. M.
,
Hauchecorne
,
A.
,
Wing
,
R.
,
Keckhut
,
P.
,
Godin-Beekmann
,
S.
,
Porteneuve
,
J.
,
Mariscal
,
J.-F.
, and
Schmitt
,
J.
(
2020
). “
Doppler lidar at Observatoire de Haute Provence for wind profiling up to 75 km altitude: Performance evaluation and observations
,”
Atmos. Meas. Tech.
13
(
3
),
1501
1516
.
32.
Lalande
,
J.-M.
,
Sebe
,
O.
,
Landes
,
M.
,
Blanc-Benon
,
P.
,
Matoza
,
R.
,
Le Pichon
,
A.
, and
Blanc
,
E.
(
2012
). “
Infrasound data inversion for atmospheric sounding
,”
Geophys. J. Int.
190
,
687
701
.
33.
Le Pichon
,
A.
,
Assink
,
J.
,
Heinrich
,
P.
,
Blanc
,
E.
,
Charlton-Perez
,
A.
,
Lee
,
C.
,
Keckhut
,
P.
,
Hauchecorne
,
A.
,
Rüfenacht
,
R.
,
Kämpfer
,
N.
,
Drob
,
D.
,
Smets
,
P.
,
Evers
,
L.
,
Ceranna
,
L.
,
Pilger
,
C.
,
Ross
,
O.
, and
Claud
,
C.
(
2015
). “
Comparison of co-located independent ground-based middle atmospheric wind and temperature measurements with numerical weather prediction models
,”
J. Geophys. Res. Atmos.
120
(
16
),
8318
8331
, .
34.
Le Pichon
,
A.
,
Blanc
,
E.
, and
Hauchecorne
,
A.
(
2019
).
Infrasound Monitoring for Atmospheric Studies
, 2nd ed. (
Springer International Publishing
,
New York
).
35.
Lee
,
C.
,
Smets
,
P.
,
Charlton-Perez
,
A.
,
Evers
,
L.
,
Harrison
,
G.
, and
Marlton
,
G.
(
2019
). “
The potential impact of upper stratospheric measurements on sub-seasonal forecasts in the extra-tropics
,” in
Infrasound Monitoring for Atmospheric Studies
, 2nd ed., edited by
A.
Le Pichon
,
E.
Blanc
, and
A.
Huachecorne
(
Springer International Publishing
,
New York
), pp.
889
910
.
36.
Liszka
,
L.
, and
Kvaerna
,
T.
(
2008
). “
Propagation of infrasound from chemical explosions
,”
Infram. Newslett.
20
,
1
10
.
37.
Nielsen
,
J.
(
1993
). “
Iterative user-interface design
,”
Computer
26
,
32
41
.
38.
Parker
,
W.
(
2016
). “
Reanalyses and observations: What's the difference?
,”
Bull. Am. Meteorol. Soc.
97
(
9
),
1565
1572
.
39.
Podglajen
,
A.
,
Hertzog
,
A.
,
Plougonyen
,
R.
, and
Zagar
,
N.
(
2014
). “
Assessment of the accuracy of (re)analyses in the equatorial lower stratosphere
,”
J. Geophys. Res. Atmos.
119
(
11
),
11166
11188
, .
40.
Shi
,
Y.
, and
Eberhart
,
R.
(
1998
). “
A modified particle swarm optimizer
,” in
Proceedings of the 1998 IEEE International Conference on Evolutionary Computation
, May 4–9,
Anchorage, AK
.
41.
Simmons
,
A.
,
Soci
,
C.
,
Nicolas
,
J.
,
Bell
,
B.
,
Berrisford
,
P.
,
Dragani
,
R.
,
Flemming
,
J.
,
Haimberger
,
L.
,
Healy
,
S.
,
Hersbach
,
H.
,
Horanyi
,
A.
,
Inness
,
A.
,
Munoz-Sabater
,
J.
,
Radu
,
R.
, and
Schepers
,
D.
(
2020
). “
Global stratospheric temperature bias and other stratospheric aspects of ERA5 and ERA5.1
,” European Centre for Medium-Range Weather Forecasts Technical Report.
42.
Siskind
,
D. E.
, and
Drob
,
D. P.
(
2014
).
Use of NOGAPS-ALPHA as a Bottom Boundary for the NCAR/TIEGCM
(
American Geophysical Union
,
Washington, DC
), Chap. 15, pp.
171
180
.
43.
Smets
,
P.
,
Evers
,
L.
,
Näsholm
,
S.
, and
Gibbons
,
S.
(
2015
). “
Probabilistic infrasound propagation using realistic atmospheric perturbations
,”
Geophys. Res. Lett.
42
(
15
),
6510
6517
, .
44.
Tan
,
D. G.
,
Andersson
,
E.
,
Kloe
,
J. D.
,
Marseille
,
G.-J.
,
Stoffelen
,
A.
,
Poli
,
P.
,
Denneulin
,
M.-L.
,
Dabas
,
A.
,
Huber
,
D.
,
Reitebuch
,
O.
,
Flamant
,
P.
,
Le Rille
,
O.
, and
Nett
,
H.
(
2008
). “
The ADM-Aeolus wind retrieval algorithms
,”
Tellus A: Dyn. Meteorol. Oceanogr.
60
(
2
),
191
205
.
45.
Uppala
,
S.
,
Källberg
,
P.
,
Simmons
,
A.
,
Andrae
,
U.
,
Da Costa Bechtold
,
V.
,
Fiorino
,
M.
,
Gibson
,
J.
,
Haseler
,
J.
,
Hernandez
,
A.
,
Kelly
,
G.
,
Li
,
X.
,
Onogi
,
K.
,
Saarinen
,
S.
,
Sokka
,
N.
,
Allan
,
R.
,
Andersson
,
E.
,
Arpe
,
K.
,
Balmaseda
,
M.
,
Beljaars
,
A.
,
van de Berg
,
L.
,
Bidlot
,
J.
,
Bormann
,
N.
,
Caires
,
S.
,
Chevallier
,
F.
,
Dethof
,
A.
,
Dragosavac
,
M.
,
Fisher
,
M.
,
Fuentes
,
M.
,
Hagemann
,
S.
,
Hólm
,
E.
,
Hoskins
,
B.
,
Isaksen
,
L.
,
Janssen
,
P.
,
Jenne
,
R.
,
Mcnally
,
A.
,
Mahfouf
,
J.
,
Morcrette
,
J.
,
Rayner
,
N.
,
Saunders
,
R.
,
Simon
,
P.
,
Sterl
,
A.
,
Trenberth
,
K.
,
Untch
,
A.
,
Vasiljevic
,
D.
,
Viterbo
,
P.
, and
Woollen
,
J.
(
2005
). “
The ERA-40 re-analysis
,”
Q. J. R. Meteorol. Soc.
131
(
612
),
2961
3012
.
46.
Vanderbecken
,
P.
,
Mahfouf
,
J.
, and
Millet
,
C.
(
2020
). “
Bayesian selection of atmospheric profiles from an ensemble data assimilation system using infrasonic observations of May 2016 Mount Etna eruptions
,”
J. Geophys. Res. Atmos.
125
(
2
),
e2019JD031168
, .
47.
Vera Rodriguez
,
I.
(
2018
). “
Full-waveform inversion of microseismic events to estimate origin times, locations, moment tensors and an attenuative velocity model
,” in
Conference Proceedings, 80th EAGE Conference and Exhibition
, June 11–14,
Copenhagen, Denmark
.
48.
Vera Rodriguez
,
I.
(
2019
). “
A heuristic-learning optimizer for elastodynamic waveform inversion in passive seismics
,”
IEEE Trans. Geosci. Remote Sens.
57
,
2234
2248
.
49.
Vera Rodriguez
,
I.
,
Bonar
,
D.
, and
Sacchi
,
M.
(
2012
). “
Microseismic data denoising using a 3C group sparsity constrained time-frequency transform
,”
Geophysics
77
(
2
),
V21
V29
.
50.
Vera Rodriguez
,
I.
, and
Kazemi
,
N.
(
2016
). “
Compressive sensing imaging of microseismic events constrained by the sign-bit
,”
Geophysics
81
(
1
),
KS1
KS10
.
51.
Vera Rodriguez
,
I.
, and
Le Calvez
,
J.
(
2018
). “
Full-waveform inversion of microseismic events including moment tensors and layer depths
,” in
SEG Technical Program Expanded Abstracts
(
SEG
,
Anaheim, CA
).

Supplementary Material

You do not currently have access to this content.