Measurements of the phase velocity of compressional sound waves in water-saturated granular materials are reported for the 1.0–2.0 MHz frequency range. The sound speed estimates are based on travel times through granular layer thicknesses ranging from 8 to 17 mm. Three types of granular media were used: 336 μm median diameter glass beads and two natural sands with median diameters of 219 and 406 μm. These grain sizes and frequency range correspond to 0.5<ka<1.2, where k is the wavenumber and a the grain radius. To remove trapped air, the samples were boiled under pressure before transfer to the measurement tank. The results are compared to previously reported experimental results and to the Schwartz and Plona [J. Appl. Phys. 55(11), 3971–3977 (1984)] multiple scattering prediction, confirming negative dispersion for ka > 0.5. Scaling the data by a factor depending on porosity and grain density reduces the spread among the available phase speed estimates by nearly a factor of 2, from 12.5% to 6.9%.

1.
Argo
,
T. F.
 IV
,
Guild
,
M. D.
,
Wilson
,
P. S.
,
Schröter
,
M.
,
Radin
,
C.
, and
Swinney
,
H. L.
(
2011
). “
Sound speed in water-saturated glass beads as a function of frequency and porosity
,”
J. Acoust. Soc. Am.
129
(
4
),
EL101
EL107
.
2.
Berryman
,
J. G.
(
1979
). “
Theory of elastic properties of composite materials
,”
Appl. Phys. Lett.
35
(
11
),
856
858
.
3.
Berryman
,
J. G.
(
1980
). “
Long-wavelength propagation in composite elastic media. I. Spherical inclusions
,”
J. Acoust. Soc. Am.
68
(
6
),
1809
1819
.
4.
Clay
,
C. S.
, and
Medwin
,
H.
(
1977
).
Acoustical Oceanography: Principles and Applications
(
NY Wiley-Interscience
,
New York)
.
5.
Delgado
,
J. M. P. Q.
(
2006
). “
A simple experimental technique to measure tortuosity in packed beds
,”
Can. J. Chem. Eng.
84
(
6
),
651
655
.
6.
Fofonoff
,
N. P.
, and
Millard
,
R. C.
(
1983
). “
Algorithms for computation of fundamental properties of seawater
,”
UNESCO Tech. Pap. Marine Sci.
44
,
1
53
.
7.
Hamilton
,
E. L.
,
Shumway
,
G.
,
Menard
,
H. W.
, and
Shipek
,
C. J.
(
1956
). “
Acoustic and other physical properties of shallow-water sediments off San Diego
,”
J. Acoust. Soc. Am.
28
(
1
),
1
15
.
8.
Hare
,
J.
, and
Hay
,
A. E.
(
2018
). “
Attenuation and group speed in water-saturated granular materials at MHz frequencies
,”
J. Acoust. Soc. Am.
143
(
5
),
2744
2755
.
9.
Jackson
,
D.
, and
Richardson
,
M.
(
2007
).
High-Frequency Seafloor Acoustics
(
Springer Science & Business Media
,
New York
).
10.
Kimura
,
M.
(
2011
). “
Velocity dispersion and attenuation in granular marine sediments: Comparison of measurements with predictions using acoustic models
,”
J. Acoust. Soc. Am.
129
(
6
),
3544
3561
.
11.
Kimura
,
M.
(
2014
). “
Erratum: Velocity dispersion and attenuation in granular marine sediments: Comparison of measurements with predictions using acoustic models [J. Acoust. Soc. Am. 129, 3544–3561 (2011)]
,”
J. Acoust. Soc. Am.
135
(
4
),
2126
2127
.
12.
Lee
,
K.
,
Humphrey
,
V.
,
Kim
,
B.-N.
, and
Yoon
,
S.
(
2007
). “
Frequency dependencies of phase velocity and attenuation coefficient in a water-saturated sandy sediment from 0.3 to 1.0 MHz
,”
J. Acoust. Soc. Am.
121
(
5
),
2553
2558
.
13.
Lee
,
K.
,
Park
,
E.
, and
Seong
,
W.
(
2009
). “
High frequency measurements of sound speed and attenuation in water-saturated glass-beads of varying size
,”
J. Acoust. Soc. Am.
126
(
1
),
EL28
EL33
.
14.
Morgan
,
P. P.
(
1994
).
SEAWATER: A library of MATLAB Computational Routines for the Properties of Sea Water: Version 1.2
(
CSIRO Marine Laboratories
,
Clayton South Victoria, Australia
).
15.
Moussatov
,
A.
,
Guillon
,
L.
,
Ayrault
,
C.
, and
Castagnède
,
B.
(
1998
). “
Experimental study of the dispersion of ultrasonic waves sandy sediments
,”
C. R. Acad. Sci. IIB
326
(
7
),
433
439
.
16.
Page
,
J. H.
,
Sheng
,
P.
,
Schriemer
,
H. P.
,
Jones
,
I.
,
Jing
,
X.
, and
Weitz
,
D. A.
(
1996
). “
Group velocity in strongly scattering media
,”
Science
271
(
5249
),
634
637
.
17.
Park
,
E.
,
Lee
,
K.
,
Seong
,
W.
, and
Park
,
J.
(
2009
). “
Sound speed and attenuation measurements in saturated glass beads
,” in
The Nineteenth International Offshore and Polar Engineering Conference
, July 21–26,
Osaka, Japan
.
18.
Reed
,
A. H.
,
Briggs
,
K. B.
, and
Lavoie
,
D. L.
(
2002
). “
Porometric properties of siliciclastic marine sand: A comparison of traditional laboratory measurements with image analysis and effective medium modeling
,”
IEEE J. Ocean. Eng.
27
(
3
),
581
592
.
19.
Reed
,
A. H.
,
Thompson
,
K. E.
,
Briggs
,
K. B.
, and
Willson
,
C. S.
(
2010
). “
Physical pore properties and grain interactions of SAX04 sands
,”
IEEE J. Ocean. Eng.
35
(
3
),
488
501
.
20.
Richardson
,
M. D.
,
Williams
,
K. L.
,
Briggs
,
K. B.
, and
Thorsos
,
E. I.
(
2002
). “
Dynamic measurement of sediment grain compressibility at atmospheric pressure: Acoustic applications
,”
IEEE J. Ocean. Eng.
27
(
3
),
593
601
.
21.
Rohatgi
,
A.
(
2015
). “
Webplotdigitizer 3.9
,” http://arohatgi.info/WebPlotDigitizer (last viewed on September 24, 2020).
22.
Schwartz
,
L.
, and
Plona
,
T. J.
(
1984
). “
Ultrasonic propagation in close-packed disordered suspensions
,”
J. Appl. Phys.
55
(
11
),
3971
3977
.
23.
Sen
,
P. N.
, and
Johnson
,
D. L.
(
1983
). “
Topological limitations of effective-medium approximations in fluid-solid systems having two longitudinal-acoustic modes
,”
Phys. Rev. B
27
(
6
),
3133
3137
.
24.
Sen
,
P. N.
,
Scala
,
C.
, and
Cohen
,
M. H.
(
1981
). “
A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads
,”
Geophys.
46
(
5
),
781
795
.
25.
Sessarego
,
J.-P.
, and
Guillermin
,
R.
(
2012
). “
High-frequency sound-speed, attenuation, and reflection measurements using water-saturated glass beads of different sizes
,”
IEEE J. Ocean. Eng.
37
(
3
),
507
515
.
26.
Sessarego
,
J.-P.
,
Ivakin
,
A. N.
, and
Ferrand
,
D.
(
2008
). “
Frequency dependence of phase speed, group speed, and attenuation in water-saturated sand: Laboratory experiments
,”
IEEE J. Ocean. Eng.
33
(
4
),
359
366
.
27.
Thomas
,
P. R.
(
1978
). “
Transmission of broadband acoustic signals through saturated granular media
,” Ph.D. thesis,
University of Bath
,
Bath, UK
.
28.
Thomas
,
P. R.
, and
Pace
,
N. G.
(
1980
). “
Broadband measurements of acoustic attenuation in water-saturated sands
,”
Ultrasonics
18
(
1
),
13
17
.
29.
Venegas
,
G. R.
, and
Wilson
,
P. S.
(
2019
). “
An illustration of the effect of neglecting poroelastic physics of water-saturated glass beads in a laboratory phase speed inference process
,”
J. Acoust. Soc. Am.
146
(
2
),
1326
1334
.
30.
Weissberg
,
H. L.
(
1963
). “
Effective diffusion coefficient in porous media
,”
J. Appl. Phys.
34
(
9
),
2636
2639
.
31.
Williams
,
K. L.
,
Jackson
,
D. R.
,
Thorsos
,
E. I.
,
Tang
,
D.
, and
Schock
,
S. G.
(
2002
). “
Comparison of sound speed and attenuation measured in a sandy sediment to predictions based on the Biot theory of porous media
,”
IEEE J. Ocean. Eng.
27
(
3
),
413
428
.
32.
Wilson
,
G. W.
, and
Hay
,
A. E.
(
2017
). “
Short-pulse method for acoustic backscatter amplitude calibration at MHz frequencies
,”
J. Acoust. Soc. Am.
142
(
3
),
1655
1662
.
33.
Wood
,
A. B.
(
1930
).
A Textbook of Sound
(
The MacMillan Company
,
New York)
.
34.
Yang
,
H.
, and
Seong
,
W.
(
2018
). “
High frequency compressional wave speed and attenuation measurements in water-saturated granular media with unimodal and bimodal grain size distributions
,”
J. Acoust. Soc. Am.
143
(
2
),
659
665
.
35.
Yang
,
H.
,
Seong
,
W.
, and
Lee
,
K.
(
2018
). “
Model-data comparison of high frequency compressional wave attenuation in water-saturated granular medium with bimodal grain size distribution
,”
Ultrasonics
82
,
161
170
.
36.
Zemanek
,
J.
(
1971
). “
Beam behavior within the nearfield of a vibrating piston
,”
J. Acoust. Soc. Am.
49
(
1B
),
181
191
.
You do not currently have access to this content.