The second-harmonic generation of the fundamental antisymmetric Lamb wave at a closed parallel crack in an elastic plate is studied by numerical analysis. The closed crack is modeled as a spring-type interface with quadratic nonlinearity. Based on a perturbation method, the problem of nonlinear Lamb wave scattering is decomposed into two linearized problems, i.e., for the linear reflection/transmission of the incident Lamb wave at the crack and for the generation/radiation of the second-harmonic Lamb waves due to the contact nonlinearity. The reduced problems are solved by the finite element method in the frequency domain. Numerical results demonstrate significant effects of the crack resonance on the linear and nonlinear Lamb wave scattering responses, which appear as sharp peaks/dips in the reflection/transmission spectra and enhanced second-harmonic amplitudes at some frequencies. Two simple frequency selection rules are established which explain the enhanced generation of the second-harmonic Lamb waves. The time-domain analysis is also carried out to supplement the frequency-domain analysis, which confirms that the incident Lamb wave interacts with the crack at some specific frequencies in its bandwidth in a selective manner and enhances the generation of the second-harmonic components.

1.
I. A.
Viktorov
,
Rayleigh and Lamb Waves, Physical Theory and Applications
(
Plenum Press
,
New York
,
1967
).
2.
P.
Cawley
and
D.
Alleyne
, “
The use of Lamb waves for the long range inspection of large structures
,”
Ultrasonics
34
,
287
290
(
1996
).
3.
S.
Rokhlin
, “
Diffraction of Lamb waves by a finite crack in an elastic layer
,”
J. Acoust. Soc. Am.
67
,
1157
1165
(
1980
).
4.
S. I.
Rokhlin
, “
Resonance phenomena of Lamb waves scattering by a finite crack in a solid layer
,”
J. Acoust. Soc. Am.
69
,
922
928
(
1981
).
5.
Y.
Cho
,
D. D.
Hongerholt
, and
J. L.
Rose
, “
Lamb wave scattering analysis for reflector characterization
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
44
52
(
1997
).
6.
D. N.
Alleyne
and
P.
Cawley
, “
The interaction of Lamb waves with defects
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
39
,
381
397
(
1992
).
7.
M.
Catstaings
,
E. Le
Clezio
, and
B.
Hosten
, “
Modal decomposition method for modeling the interaction of Lamb waves with cracks
,”
J. Acoust. Soc. Am.
112
,
2567
2582
(
2002
).
8.
M. J. S.
Lowe
and
O.
Diligent
, “
Low-frequency reflection characteristics of the s0 Lamb wave from a rectangular notch in a plate
,”
J. Acoust. Soc. Am.
111
,
64
74
(
2002
).
9.
M. J. S.
Lowe
,
P.
Cawley
,
J.-Y.
Kao
, and
O.
Diligent
, “
The low frequency reflection characteristics of the fundamental antisymmetric Lamb wave a0 from a rectangular notch in a plate
,”
J. Acoust. Soc. Am.
112
,
2612
2622
(
2002
).
10.
A.
Gunawan
and
S.
Hirose
, “
Mode-exciting method for Lamb wave scattering analysis
,”
J. Acoust. Soc. Am.
115
,
996
1005
(
2004
).
11.
M. A.
Flores-López
and
R. D.
Gregory
, “
Scattering of Rayleigh-Lamb waves by a surface breaking crack in an elastic plate
,”
J. Acoust. Soc. Am.
119
,
2041
2049
(
2006
).
12.
T.
Kundu
,
A.
Maji
,
T.
Ghosh
, and
K.
Maslov
, “
Detection of kissing bonds by Lamb waves
,”
Ultrasonics
35
,
573
580
(
1998
).
13.
B. C.
Lee
and
W. J.
Staszewski
, “
Modelling of Lamb wave interaction with open and closed fatigue cracks for damage detection
,”
IOP Conf. Ser.: Mater. Sci. Eng.
10
,
012059
(
2010
).
14.
H.
Cho
and
C. J.
Lissenden
, “
Structural health monitoring of fatigue crack growth in plate structures with ultrasonic guided waves
,”
Struct. Health Monit.
11
,
393
404
(
2011
).
15.
M.
Matsushita
,
N.
Mori
, and
S.
Biwa
, “
Transmission of Lamb waves across a partially closed crack: Numerical analysis and experiment
,”
Ultrasonics
92
,
57
67
(
2019
).
16.
I. Y.
Solodov
,
N.
Krohn
, and
G.
Busse
, “
CAN: An example of nonclassical acoustic nonlinearity in solids
,”
Ultrasonics
40
,
621
625
(
2002
).
17.
N. P.
Yelve
,
M.
Mitra
, and
P. M.
Mujumdar
, “
Detection of stiffener disbonding in a stiffened aluminium panel using nonlinear Lamb wave
,”
Appl. Acoust.
89
,
267
272
(
2015
).
18.
N. P.
Yelve
,
M.
Mitra
,
P. M.
Mujumdar
, and
C.
Ramadas
, “
A hybrid method based upon nonlinear Lamb wave response for locating a delamination in composite laminates
,”
Ultrasonics
70
,
12
17
(
2016
).
19.
N. P.
Yelve
,
M.
Mitra
, and
P. M.
Mujumdar
, “
Detection of delamination in composite laminates using Lamb wave based nonlinear method
,”
Compos. Struct.
159
,
257
266
(
2017
).
20.
R.
Soleimanpour
,
C. T.
Ng
, and
C. H.
Wang
, “
Higher harmonic generation of guided waves at delaminations in laminated composite beams
,”
Struct. Heal. Monit.
16
,
400
417
(
2017
).
21.
X.
Liu
,
L.
Bo
,
K.
Yang
,
Y.
Liu
,
Y.
Zhao
,
J.
Zhang
,
N.
Hu
, and
M.
Deng
, “
Locating and imaging contact delamination based on chaotic detection of nonlinear Lamb waves
,”
Mech. Syst. Signal Process.
109
,
58
73
(
2018
).
22.
G.
Shkerdin
and
C.
Glorieux
, “
Nonlinear modulation of Lamb modes by clapping delamination
,”
J. Acoust. Soc. Am.
124
,
3397
3409
(
2009
).
23.
G.
Shkerdin
and
C.
Glorieux
, “
Nonlinear clapping modulation of lamb modes by normally closed delamination
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
57
,
1426
1433
(
2010
).
24.
S.
Delrue
and
K.
Van Den Abeele
, “
Three-dimensional finite element simulation of closed delaminations in composite materials
,”
Ultrasonics
52
,
315
324
(
2012
).
25.
S.
Delrue
and
K.
Van Den Abeele
, “
Detection of defect parameters using nonlinear air-coupled emission by ultrasonic guided waves at contact acoustic nonlinearities
,”
Ultrasonics
63
,
147
154
(
2015
).
26.
A. K.
Singh
,
B. Y.
Chen
,
V. B. C.
Tan
,
T. E.
Tay
, and
H. P.
Lee
, “
Finite element modeling of nonlinear acoustics/ultrasonics for the detection of closed delaminations in composites
,”
Ultrasonics
74
,
89
98
(
2017
).
27.
C.
Pecorari
, “
Nonlinear interaction of plane ultrasonic waves with an interface between rough surfaces in contact
,”
J. Acoust. Soc. Am.
113
,
3065
3072
(
2003
).
28.
S.
Biwa
,
S.
Nakajima
, and
N.
Ohno
, “
On the acoustic nonlinearity of solid-solid contact with pressure-dependent interface stiffness
,”
Trans. ASME J. Appl. Mech.
71
,
508
515
(
2004
).
29.
J.-Y.
Kim
and
J.-S.
Lee
, “
A micromechanical model for nonlinear acoustic properties of interfaces between solids
,”
J. Appl. Phys.
101
,
043501
(
2007
).
30.
S.
Biwa
,
S.
Hiraiwa
, and
E.
Matsumoto
, “
Experimental and theoretical study of harmonic generation at contacting interface
,”
Ultrasonics
44
,
e1319
e1322
(
2006
).
31.
J.-Y.
Kim
,
A.
Baltazar
,
J. W.
Hu
, and
S. I.
Rokhlin
, “
Hysteretic linear and nonlinear acoustic responses from pressed interfaces
,”
Int. J. Solids Struct.
43
,
6436
6452
(
2006
).
32.
S.
Biwa
, “
Second-harmonic generation at contacting interfaces
,” in
Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation
, edited by
T.
Kundu
(
Springer
,
Cham, Switzerland
,
2019
), pp.
263
299
.
33.
N.
Mori
,
S.
Biwa
, and
T.
Hayashi
, “
Reflection and transmission of Lamb waves at an imperfect joint of plates
,”
J. Appl. Phys.
113
,
074901
(
2013
).
34.
N.
Mori
and
S.
Biwa
, “
Transmission of Lamb waves and resonance at an adhesive butt joint of plates
,”
Ultrasonics
72
,
80
88
(
2016
).
35.
N.
Mori
and
S.
Biwa
, “
Transmission characteristics of the S0 and A0 Lamb waves at contacting edges of plates
,”
Ultrasonics
81
,
93
99
(
2017
).
36.
N.
Mori
,
S.
Biwa
, and
T.
Kusaka
, “
Harmonic generation at a nonlinear imperfect joint of plates by the S0 Lamb wave incidence
,”
Trans. ASME J. Appl. Mech.
86
,
121003
(
2019
).
37.
S.
Biwa
and
N.
Ito
, “
Nonlinear response of a closed defect to Lamb waves: Perturbation analysis using hybrid finite element method
,” in
Recent Advances in Structural Integrity Analysis-Proceedings of the International Congress (APCF/SIF-2014)
(
Woodhead Publishing
,
Sawston, UK
,
2014
) pp.
261
264
.
38.
I.
Solodov
,
J.
Bai
,
S.
Bekgulyan
, and
G.
Busse
, “
A local defect resonance to enhance acoustic wave-defect interaction in ultrasonic nondestructive evaluation
,”
Appl. Phys. Lett.
99
,
211911
(
2011
).
39.
I.
Solodov
, “
Resonant acoustic nonlinearity of defects for highly-efficient nonlinear NDE
,”
J. Nondestr. Eval.
33
,
252
262
(
2014
).
40.
Z.
An
,
X.
Wang
,
M.
Deng
,
J.
Mao
, and
M.
Li
, “
A nonlinear spring model for an interface between two solids
,”
Wave Motion
50
,
295
309
(
2013
).
41.
Z.
Zhang
,
P.
Nagy
, and
W.
Hassan
, “
Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface
,”
Ultrasonics
65
,
165
176
(
2016
).
42.
Y.
Ishii
,
S.
Biwa
, and
T.
Adachi
, “
Second-harmonic generation of two-dimensional elastic wave propagation in an infinite layered structure with nonlinear spring-type interfaces
,”
Wave Motion
96
,
102569
(
2020
).
43.
J. L.
Rose
,
Ultrasonic Waves in Solid Media
(
Cambridge University Press
,
Cambridge
,
1999
).
44.
P. B.
Nagy
, “
Ultrasonic classification of imperfect interfaces
,”
J. Nondestr. Eval.
11
,
127
139
(
1992
).
45.
A.
Baltazar
,
S. I.
Rokhlin
, and
C.
Pecorari
, “
On the relationship between ultrasonic and micromechanical properties of contacting rough surfaces
,”
J. Mech. Phys. Solids
50
,
1397
1416
(
2002
).
46.
D.
Liaptsis
,
B.
Drinkwater
, and
R.
Thomas
, “
The interaction of oblique incidence ultrasound with rough, partially contacting interfaces
,”
Nondestr. Test. Eval.
21
,
109
121
(
2006
).
47.
S.
Biwa
,
S.
Hiraiwa
, and
E.
Matsumoto
, “
Stiffness evaluation of contacting interfaces by bulk and interface waves
,”
Ultrasonics
47
,
123
129
(
2007
).
48.
S.
Biwa
,
S.
Hiraiwa
, and
E.
Matsumoto
, “
Pressure-dependent stiffnesses and nonlinear ultrasonic response of contacting surfaces
,”
J. Solid Mech. Mater. Eng.
3
,
10
21
(
2009
).
49.
S. I.
Rokhlin
and
Y. J.
Wang
, “
Analysis of boundary conditions for elastic wave interaction with an interface between two solids
,”
J. Acoust. Soc. Am.
89
,
503
515
(
1991
).
50.
B. K.
Novikov
and
O. V.
Rudenko
, “
Generation of low-frequency harmonics in the field of a high-power amplitude-modulated wave
,”
Sov. Phys. Acoust.
23
,
455
459
(
1977
).
51.
S.
Biwa
,
K.
Nagae
,
C.
Inserra
, and
E.
Matsumoto
, “
Evaluation of nonlinear low-frequency components generated by amplitude-modulated waves in a carbon/carbon composite
,”
AIP Conf. Proc.
1433
,
497
500
(
2012
).
52.
M. J. S.
Lowe
, “
Matrix techniques for modeling ultrasonic waves in multilayered media
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
42
,
525
542
(
1995
).
You do not currently have access to this content.