The open porosity of air-saturated acoustical porous materials is estimated from the low-frequency or high-frequency asymptotes of the real part of the dynamic bulk modulus. Combining this technique with the estimation of the static air-flow resistivity from the low-frequency asymptote of the imaginary part of the dynamic mass density and the analytical inversions of the remaining parameters from the dynamic mass density and bulk modulus [methods introduced by Panneton and Olny, J. Acoust. Soc. Am. 119(4), 2027–2040 (2006) and Olny and Panneton 123(2), 814–824 (2008)], this work estimates all six parameters of a Johnson-Champoux-Allard-Lafarge model from impedance tube measurements. A classical two-microphone impedance tube, as well as three- or four-microphone tubes, can be used for these measurements and estimations. Examples of applications and limits of the method are presented and a tool to estimate the open porosity and the static air-flow resistivity is made available online.

1.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid Mech.
176
,
379
402
(
1987
).
2.
Y.
Champoux
and
J.-F.
Allard
, “
Dynamic tortuosity and bulk modulus in air-saturated porous media
,”
J. Appl. Phys.
70
,
1975
1979
(
1991
).
3.
D.
Lafarge
,
P.
Lemarinier
,
J.-F.
Allard
, and
V.
Tarnow
, “
Dynamic compressibility of air in porous structures at audible frequencies
,”
J. Acoust. Soc. Am.
102
(
4
),
1995
2006
(
1997
).
4.
L.
Jaouen
, “
JCAL model
” (
2006
), available at http://apmr.matelys.com/PropagationModels/MotionlessSkeleton/JohnsonChampouxAllardLafargeModel.html (Last viewed April 9, 2020).
5.
R.
Panneton
and
X.
Olny
, “
Acoustical determination of the parameters governing viscous dissipation in porous media
,”
J. Acoust. Soc. Am.
119
(
4
),
2027
2040
(
2006
).
6.
X.
Olny
and
R.
Panneton
, “
Acoustical determination of the parameters governing thermal dissipation in porous media
,”
J. Acoust. Soc. Am.
123
(
2
),
814
824
(
2008
).
7.
I. B.
Crandall
,
Theory of Vibrating Systems and Sound
(
Van Nostrand Cie
,
New York
,
1926
).
8.
O. C.
Zwikker
and
C. W.
Kosten
,
Sound-Absorbing Materials
(
Elsevier
,
New York
,
1949
).
9.
See https://bit.ly/CharacFromTube (Last viewed October 6, 2020).
10.
ISO 15901-1
, “
Acoustics—Evaluation of pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption—Part 1: Mercury porosimetry
” (International Organization for Standardization, Geneva, Switzerland,
2016
).
11.
L. L.
Beranek
, “
Acoustic impedance of porous materials
,”
J. Acoust. Soc. Am.
13
,
248
260
(
1942
).
12.
Y.
Champoux
,
M. R.
Stinson
, and
G. A.
Daigle
, “
Air-based system for the measurement of porosity
,”
J. Acoust. Soc. Am.
89
(
2
),
910
916
(
1991
).
13.
R. W.
Leonard
, “
Simplified porosity measurements
,”
J. Acoust. Soc. Am.
20
(
1
),
39
41
(
1948
).
14.
P.
Leclaire
,
O.
Umnova
,
K.
Horoshenkov
, and
L.
Maillet
, “
Porosity measurement by comparison of air volumes
,”
Rev. Sci. Instrum.
74
(
3
),
1366
1370
(
2003
).
15.
R.
Panneton
and
E.
Gros
, “
A missing mass method to measure the open porosity of porous solids
,”
Acta Acust. Acust.
91
(
2
),
342
348
(
2005
).
16.
Y.
Salissou
and
R.
Panneton
, “
Pressure/mass method to measure open porosity of porous solids
,”
J. Appl. Phys.
101
,
124913
(
2007
).
17.
F.-X.
Bécot
,
L.
Jaouen
, and
E.
Gourdon
, “
Applications of the dual porosity theory to irregularly shaped porous materials
,”
Acta Acust. Acust.
94
(
5
),
715
724
(
2008
).
18.
F. A. L.
Dullien
,
Porous Media: Fluid Transport and Pore Structure
(
Academic
,
New York
,
1979
).
19.
Z. E.
Fellah
,
S.
Berger
,
W.
Lauriks
,
C.
Depollier
,
C.
Aristégui
, and
J.-Y.
Chapelon
, “
Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence
,”
J. Acoust. Soc. Am.
113
(
5
),
2424
2433
(
2003
).
20.
O.
Umnova
,
K.
Attenborough
,
H.-C.
Shin
, and
A.
Cummings
, “
Deduction of tortuosity and porosity from acoustic reflection and transmission measurements on thick samples of rigid-porous materials
,”
Appl. Acoust.
66
(
6
),
607
624
(
2005
).
21.
N.
Sellen
, “
Modification de l'impédance de surface d'un matériau par contrôle actif: Application à la caractérisation et à l'optimisation d'un absorbant acoustique
” (“Modification of the surface impedance of a material with active control: Application to the characterization and the optimization of an acoustic absorber”), Ph.D. thesis, Ecole Centrale de Lyon, Lyon, France,
2003
(in French).
22.
G.
Benoît
, “
Caractérisation des propriétés acoustiques de revêtements poreux par mesures in situ—Application au colmatage des chaussées
” (“Characterization of the acoustic properties of porous coatings using in-situ measurements—Application to the clogging of road surfaces”), Ph.D. thesis, Ecole Nationale des Travaux Publics de l'Etat, Lyon, France,
2013
(in French).
23.
L.
Jaouen
and
X.
Olny
, “
Indirect acoustical characterization of a foam with two scales of porosity
,” in
Proc. of SAPEM, 2005
, Lyon, France (
2005
).
24.
R.
Venegas
and
O.
Umnova
, “
Acoustical properties of double porosity granular materials
,”
J. Acoust. Soc. Am.
130
(
5
),
2765
2776
(
2011
).
25.
R.
Venegas
, “
Microstructure influence on acoustical properties of multi-scale porous materials
,” Ph.D. thesis,
University of Salford
,
Salford, UK
,
2011
.
26.
P.
Glé
, “
Acoustique des matériaux du bâtiment à base de fibres et particules végétales—Outils de caractérisation, modélisation et optimisation
(“Acoustics of building materials based on vegetal fibers and particles—Characterization, modeling and optimization tools”),” Ph.D. thesis, Ecole Nationale des Travaux Publics de l'Etat, Lyon, France,
2013
(in French).
27.
ISO 9053-1
, “
Acoustics—Materials for acoustical applications—Determination of airflow resistance—Part 1: Static airflow method
” (International Organization for Standardization, Geneva, Switzerland,
2018
).
28.
ISO 10534-2
, “
Acoustics—Determination of sound absorption coefficient and impedance in impedance tubes—Part 2: Transfer-function method
” (International Organization for Standardization, Geneva, Switzerland,
1998
).
29.
X.
Olny
and
C.
Boutin
, “
Acoustic wave propagation in double porosity media
,”
J. Acoust. Soc. Am.
114
,
73
89
(
2003
).
30.
T.
Iwase
,
Y.
Izumi
, and
R.
Kawabata
, “
A new sound tube measuring method for propagation constant in porous material—Method without any air space at the back of test material
,” in
Proc. of Internoise, 1998
, Christchurch, New Zealand (
1998
).
31.
F.
Pompoli
,
P.
Bonfiglio
,
K. V.
Horoshenkov
,
A.
Khan
,
L.
Jaouen
,
F.-X.
Bécot
,
F.
Sgard
,
F.
Asdrubali
,
F.
D'Alessandro
,
J.
Hübelt
,
N.
Atalla
,
C. K.
Amédin
,
W.
Lauriks
, and
L.
Boeckx
, “
How reproducible is the acoustical characterization of porous media?
,”
J. Acoust. Soc. Am.
141
(
2
),
945
955
(
2017
).
32.
L.
Jaouen
and
F.-X.
Bécot
, “
Acoustical characterization of perforated facings
,”
J. Acoust. Soc. Am.
129
(
3
),
1400
1406
(
2011
).
33.
N.
Atalla
and
F.
Sgard
, “
Modeling of perforated plates and screens using rigid frame porous models
,”
J. Sound Vib.
303
,
195
208
(
2007
).
34.
H.
Utsuno
,
T.
Tanaka
,
T.
Fujikawa
, and
A. F.
Seybert
, “
Transfer function method for measuring characteristic impedance and propagation constant of porous materials
,”
J. Acoust. Soc. Am.
86
(
2
),
637
643
(
1989
).
35.
C. D.
Smith
and
T. L.
Parrott
, “
Comparison of three methods for measuring acoustic properties of bulk materials
,”
J. Acoust. Soc. Am.
74
(
5
),
1577
1582
(
1983
).
36.
T.
Iwase
and
Y.
Izumi
, “
A new sound tube measuring method for propagation constant in porous material—Method without any air space at the back of test material
,”
J. Acoust. Soc. Jpn. J.
52
(
6
),
411
419
(
1996
) (in Japanese).
37.
Y.
Salissou
and
R.
Panneton
, “
Wideband characterization of the complex wave number and characteristic impedance of sound absorbers
,”
J. Acoust. Soc. Am.
128
(
5
),
2868
2876
(
2010
).
38.
Y.
Salissou
,
O.
Doutres
, and
R.
Panneton
, “
Complement to standard method for measuring normal incidence sound transmission loss with three microphones
,”
J. Acoust. Soc. Am.
131
,
EL216
EL222
(
2012
).
39.
B. H.
Song
and
J. S.
Bolton
, “
A transfer matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials
.,”
J. Acoust. Soc. Am.
107
(
3
),
1131
1152
(
2000
).
You do not currently have access to this content.