Conventional compressive beamforming assumes that the acoustic sources fall on the discretized grid points. The performance degrades when the acoustic source lies off the discretized grid point, that is, when the basis mismatch occurs. This paper proposes a two-dimensional Newtonized orthogonal matching pursuit compressive beamforming, including single and multiple snapshot versions, which constructs the maximum likelihood estimation model, taking the position and strength of sources on a two-dimensional continuous plane as parameters. This method first captures the grid point near the source based on the discrete grid. Then it optimizes the coordinate estimation within the local continuous plane by a combination of the two-dimensional Newton optimization and a feedback mechanism to converge to the actual source position. It allows acoustic source identification in the near field utilizing arbitrary geometry planar array and works without the prior knowledge of signal-to-noise ratio and/or regularization parameters. Simulations and experiments show that the proposed method can overcome the basis mismatch issue and provide high spatial resolution, obtaining an accurate estimation for the position and strength of the acoustic source. Moreover, the multiple snapshot version outperforms the single snapshot version, especially under low signal-to-noise ratio. The larger the number of snapshots, the better the performance.

1.
P.
Chiariotti
,
M.
Martarelli
, and
P.
Castellini
, “
Acoustic beamforming for noise source localization: Reviews, methodology and applications
,”
Mech. System. Signal Process.
120
,
422
448
(
2019
).
2.
R.
Merino–Martinez
,
P.
Sijtsma
,
M.
Snellen
,
T.
Ahlefeldt
,
J.
Antoni
,
C. J.
Bahr
,
D.
Blacodon
,
D.
Ernst
,
A.
Finez
,
S.
Funke
,
T. F.
Geyer
,
S.
Haxter
,
G.
Herold
,
X.
Huang
,
W. M.
Humphreys
,
Q.
Leclère
,
A. M. N.
Malgoezar
,
U.
Michel
,
T.
Padois
,
A.
Pereira
,
C.
Picard
,
E.
Sarradj
,
H.
Siller
,
D. G.
Simons
, and
C.
Spehr
, “
A review of acoustic imaging methods using phased microphone arrays
,”
CEAS Aeronaut. J.
10
(
1
),
197
230
(
2019
).
3.
D.
Malioutov
,
M.
Cetin
, and
A. S.
Willsky
, “
A sparse signal reconstruction perspective for source localization with sensor arrays
,”
IEEE Trans. Signal Process.
53
(
8
),
3010
3022
(
2005
).
4.
G. F.
Edelmann
and
C. F.
Gaumond
, “
Beamforming using compressive sensing
,”
J. Acoust. Soc. Am.
130
(
4
),
EL232
EL237
(
2011
).
5.
A.
Xenaki
,
P.
Gerstoft
, and
K.
Mosegaard
, “
Compressive beamforming
,”
J. Acoust. Soc. Am.
136
(
1
),
260
271
(
2014
).
6.
P.
Gerstoft
,
A.
Xenaki
, and
C. F.
Mecklenbräuker
, “
Multiple and single snapshot compressive beamforming
,”
J. Acoust. Soc. Am.
138
(
4
),
2003
2014
(
2015
).
7.
A. M.
Elbir
and
T. E.
Tuncer
, “
2-D DOA and mutual coupling coefficient estimation for arbitrary array structures with single and multiple snapshots
,”
Digital Signal Process.
54
,
75
86
(
2016
).
8.
J.
Shi
,
G.
Hu
,
X.
Zhang
,
F.
Sun
, and
H.
Zhou
, “
Sparsity-based two-dimensional DOA estimation for coprime array: From sum–difference coarray viewpoint
,”
IEEE Trans. Signal Process.
65
(
21
),
5591
5604
(
2017
).
9.
F.
Ning
,
F.
Pan
,
C.
Zhang
,
Y.
Liu
,
X.
Li
, and
J.
Wei
, “
A highly efficient compressed sensing algorithm for acoustic imaging in low signal-to-noise ratio environments
,”
Mech. System. Signal Process.
112
,
113
128
(
2018
).
10.
S.
Nannuru
and
P.
Gerstoft
, “
2D beamforming on sparse arrays with sparse Bayesian learning
,” in
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, pp.
4355
4359
(
2019
).
11.
P.
Gerstoft
,
C. F.
Mecklenbräuker
,
W.
Seong
, and
M.
Bianco
, “
Introduction to special issue on compressive sensing in acoustics
,”
J. Acoust. Soc. Am.
143
(
6
),
3731
3736
(
2018
).
12.
Y.
Chi
,
L. L.
Scharf
,
A.
Pezeshki
, and
A. R.
Calderbank
, “
Sensitivity to basis mismatch in compressed sensing
,”
IEEE Trans. Signal Process.
59
(
5
),
2182
2195
(
2011
).
13.
Z.
Yang
,
L.
Xie
, and
C.
Zhang
, “
Off-grid direction of arrival estimation using sparse Bayesian inference
,”
IEEE Trans. Signal Process.
61
(
1
),
38
43
(
2013
).
14.
A.
Gretsistas
and
M. D.
Plumbley
, “
An alternating descent algorithm for the off-grid DOA estimation problem with sparsity constraints
,” in
Proceedings of the 20th European Signal Processing Conference (EUSIPCO)
, pp.
874
878
(
2012
).
15.
A.
Das
, “
Deterministic and Bayesian sparse signal processing algorithms for coherent multipath directions-of-arrival (DOAs) estimation
,”
IEEE J. Oceanic Engineer.
44
(
4
),
1150
1164
(
2019
).
16.
A.
Das
and
T. J.
Sejnowski
, “
Narrowband and wideband off-grid direction-of-arrival estimation via sparse Bayesian learning
,”
IEEE J. Oceanic Engineer.
43
(
1
),
108
118
(
2018
).
17.
F.
Shen
,
Y.
Liu
,
G.
Zhao
,
X.
Chen
, and
X.
Li
, “
Sparsity-based off-grid DOA estimation with uniform rectangular arrays
,”
IEEE Sensors J.
18
(
8
),
3384
3390
(
2018
).
18.
J.
Li
,
Y.
Li
, and
X.
Zhang
, “
Two-dimensional off-grid DOA estimation using unfolded parallel coprime array
,”
IEEE Commun. Lett.
22
(
12
),
2495
2498
(
2018
).
19.
A.
Xenaki
and
P.
Gerstoft
, “
Grid-free compressive beamforming
,”
J. Acoust. Soc. Am.
137
(
4
),
1923
1935
(
2015
).
20.
Y.
Yang
,
Z.
Chu
,
Z.
Xu
, and
G.
Ping
, “
Two-dimensional grid-free compressive beamforming
,”
J. Acoust. Soc. Am.
142
(
2
),
618
629
(
2017
).
21.
Y.
Yang
,
Z.
Chu
,
G.
Ping
, and
Z.
Xu
, “
Resolution enhancement of two-dimensional grid-free compressive beamforming
,”
J. Acoust. Soc. Am.
143
(
6
),
3860
3872
(
2018
).
22.
Y.
Yang
,
Z.
Chu
, and
G.
Ping
, “
Two-dimensional multiple-snapshot grid-free compressive beamforming
,”
Mech. System. Signal Process.
124
,
524
540
(
2019
).
23.
Y.
Yang
and
Z.
Chu
, “
Two-dimensional multiple-snapshot grid-free compressive beamforming using alternating direction method of multipliers
,”
Shock and Vibr.
2020
,
1310805
.
24.
Y.
Park
,
W.
Seong
, and
P.
Gerstoft
, “
Block-sparse two-dimensional off-grid beamforming with arbitrary planar array geometry
,”
J. Acoust. Soc. Am.
147
(
4
),
2184
2191
(
2020
).
25.
B.
Mamandipoor
,
D.
Ramasamy
, and
U.
Madhow
, “
Newtonized orthogonal matching pursuit: Frequency estimation over the continuum
,”
IEEE Trans. Signal Process.
64
(
19
),
5066
5081
(
2016
).
26.
D.
Needell
and
J. A.
Tropp
, “
CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
,”
Appl. Comput. Harmonic Analy.
26
(
3
),
301
321
(
2009
).
27.
W.
Dai
and
O.
Milenkovic
, “
Subspace pursuit for compressive sensing signal reconstruction
,”
IEEE Trans. Inform. Theory
55
(
5
),
2230
2249
(
2009
).
28.
J. A.
Tropp
and
A. C.
Gilbert
, “
Signal recovery from random measurements via orthogonal matching pursuit
,”
IEEE Trans. Inform. Theory
53
(
12
),
4655
4666
(
2007
).
29.
D.
Ramasamy
,
S.
Venkateswaran
, and
U.
Madhow
, “
Compressive adaptation of large steerable arrays
,” in
Information Theory and Applications Workshop
, pp.
234
239
(
2012
).
30.
J.
Zhu
,
L.
Han
,
R. S.
Blum
, and
Z.
Xu
, “
Multi-snapshot Newtonized orthogonal matching pursuit for line spectrum estimation with multiple measurement vectors
,”
Signal Process.
165
,
175
185
(
2019
).
31.
P.
Simard
and
J.
Antoni
, “
Acoustic source identification: Experimenting the ℓ(1) minimization approach
,”
Appl. Acoust.
74
(
7
),
974
986
(
2013
).
32.
M.
Elad
,
Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing
(
Springer Science & Business Media
,
Berlin
,
2010
).
33.
S.
Foucart
and
H.
Rauhut
, “
A mathematical introduction to compressive sensing
,” in
Applied and Numerical Harmonic Analysis
(
Springer International Publishing
,
Berlin
,
2013
).
34.
H.
Boche
,
R.
Calderbank
,
G.
Kutyniok
, and
J.
Vybral
,
Compressed Sensing and Its Applications
(
Springer International Publishing
,
Berlin
,
2015
).
35.
E. J.
Candès
and
T.
Tao
, “
Decoding by linear programming
,”
IEEE Trans. Inform. Theory
51
(
12
),
4203
4215
(
2005
).
36.
S. S. B.
Chen
,
D. L.
Donoho
, and
M. A.
Saunders
, “
Atomic decomposition by basis pursuit
,”
SIAM Rev.
43
(
1
),
129
159
(
2001
).
37.
I.
Daubechies
,
M.
Defrise
, and
C.
De Mol
, “
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
,”
Commun. Pure Appl. Math.
57
(
11
),
1413
1457
(
2004
).
38.
E. J.
Candès
, “
The restricted isometry property and its implications for compressed sensing
,”
Comptes Rendus Mathématique
346
(
9–10
),
589
592
(
2008
).
You do not currently have access to this content.