With the Marchenko method, it is possible to retrieve the wave field inside a medium from its reflection response at the surface. To date, this method has predominantly been applied to naturally occurring materials. This study extends the Marchenko method for applications in layered metamaterials with, in the low-frequency limit, effective negative constitutive parameters. It illustrates the method with a numerical example, which confirms that the method properly accounts for multiple scattering. The proposed method has potential applications, for example, in non-destructive testing of layered materials.

1.
V. A.
Marchenko
, “
Reconstruction of the potential energy from the phases of the scattered waves
(
in Russian),” Dokl. Akad. Nauk SSSR
104
,
695
698
(
1955
).
2.
G. L.
Lamb
,
Elements of Soliton Theory
(
John Wiley and Sons, Inc
.,
New York
,
1980
), pp.
46
67
.
3.
K.
Chadan
and
P. C.
Sabatier
,
Inverse Problems in Quantum Scattering Theory
(
Springer
,
Berlin
,
1989
), Chaps. 5 and 7.
4.
D. E.
Budreck
and
J. H.
Rose
, “
Three-dimensional inverse scattering in anisotropic elastic media
,”
Inverse Probl.
6
,
331
348
(
1990
).
5.
J. H.
Rose
, “ 
‘Single-sided’ focusing of the time-dependent Schrödinger equation
,”
Phys. Rev. A
65
,
012707
(
2001
).
6.
J. H.
Rose
, “ 
‘Single-sided’ autofocusing of sound in layered materials
,”
Inverse Probl.
18
,
1923
1934
(
2002
).
7.
F.
Broggini
and
R.
Snieder
, “
Connection of scattering principles: A visual and mathematical tour,” Eur
. J. Phys.
33
,
593
613
(
2012
).
8.
K.
Wapenaar
,
F.
Broggini
, and
R.
Snieder
, “
Creating a virtual source inside a medium from reflection data: Heuristic derivation and stationary-phase analysis
,”
Geophys. J. Int.
190
,
1020
1024
(
2012
).
9.
J.
Van der Neut
,
I.
Vasconcelos
, and
K.
Wapenaar
, “
On Green's function retrieval by iterative substitution of the coupled Marchenko equations
,”
Geophys. J. Int.
203
,
792
813
(
2015
).
10.
P.
Elison
,
D. J.
van Manen
,
J. O. A.
Robertsson
,
M. S.
Dukalski
, and
K.
de Vos
, “
Marchenko-based immersive wave simulation
,”
Geophys. J. Int.
215
,
1118
1131
(
2018
).
11.
K.
Wapenaar
,
J.
Brackenhoff
,
J.
Thorbecke
,
J.
van der Neut
,
E.
Slob
, and
E.
Verschuur
, “
Virtual acoustics in inhomogeneous media with single-sided access
,
” Sci. Rep.
8
,
2497
(
2018
).
12.
M.
Dukalski
and
K.
de Vos
, “
Marchenko inversion in a strong scattering regime including surface-related multiples
,”
Geophys. J. Int.
212
,
760
776
(
2018
).
13.
J.
Brackenhoff
,
J.
Thorbecke
, and
K.
Wapenaar
, “
Monitoring of induced distributed double-couple sources using Marchenko-based virtual receivers
,”
Solid Earth
10
,
1301
1319
(
2019
).
14.
K.
Wapenaar
,
J.
Thorbecke
,
J.
van der Neut
,
F.
Broggini
,
E.
Slob
, and
R.
Snieder
, “
Marchenko imaging
,”
Geophysics
79
,
WA39
WA57
(
2014
).
15.
E.
Slob
,
K.
Wapenaar
,
F.
Broggini
, and
R.
Snieder
, “
Seismic reflector imaging using internal multiples with Marchenko-type equations
,”
Geophysics
79
,
S63
S76
(
2014
).
16.
F.
Broggini
,
R.
Snieder
, and
K.
Wapenaar
, “
Data-driven wavefield focusing and imaging with multidimensional deconvolution: Numerical examples for reflection data with internal multiples
,”
Geophysics
79
,
WA107
WA115
(
2014
).
17.
G. A.
Meles
,
K.
Löer
,
M.
Ravasi
,
A.
Curtis
, and
C. A.
da Costa Filho
, “
Internal multiple prediction and removal using Marchenko autofocusing and seismic interferometry
,”
Geophysics
80
,
A7
A11
(
2015
).
18.
M.
Ravasi
,
I.
Vasconcelos
,
A.
Kritski
,
A.
Curtis
,
C. A.
da Costa Filho
, and
G. A.
Meles
, “
Target-oriented Marchenko imaging of a North Sea field
,”
Geophys. J. Int.
205
,
99
104
(
2016
).
19.
J.
Van der Neut
,
M.
Ravasi
,
Y.
Liu
, and
I.
Vasconcelos
, “
Target-enclosed seismic imaging
,”
Geophysics
82
,
Q53
Q66
(
2017
).
20.
C.
Mildner
,
F.
Broggini
,
J. O. A.
Robertsson
,
D. J.
van Manen
, and
S.
Greenhalgh
, “
Target-oriented velocity analysis using Marchenko-redatumed data
,”
Geophysics
82
,
R75
R86
(
2017
).
21.
M.
Ravasi
, “
Rayleigh-Marchenko redatuming for target-oriented, true-amplitude imaging
,”
Geophysics
82
,
S439
S452
(
2017
).
22.
M.
Staring
,
R.
Pereira
,
H.
Douma
,
J.
van der Neut
, and
K.
Wapenaar
, “
Source-receiver Marchenko redatuming on field data using an adaptive double-focusing method
,”
Geophysics
83
,
S579
S590
(
2018
).
23.
K.
Wapenaar
and
C.
Reinicke
, “
Unified wave field retrieval and imaging method for inhomogeneous non-reciprocal media
,”
J. Acoust. Soc. Am.
146
,
810
825
(
2019
).
24.
V. G.
Veselago
, “
The electrodynamics of substances with simultaneously negative values of ϵ and
μ,”
Soviet Phys. Uspekhi
10
,
509
514
(
1968
).
25.
J. B.
Pendry
, “
Negative refraction makes a perfect lens
,”
Phys. Rev. Lett.
85
,
3966
3969
(
2000
).
26.
R. W.
Ziolkowski
and
E.
Heyman
, “
Wave propagation in media having negative permittivity and permeability
,”
Phys. Rev. E
64
,
056625
(
2001
).
27.
R.
Marqués
,
F.
Medina
, and
R.
Rafii-El-Idrissi
, “
Role of bianisotropy in negative permeability and left-handed metamaterials
,”
Phys. Rev. B
65
,
144440
(
2002
).
28.
R. W.
Ziolkowski
and
A. D.
Kipple
, “
Causality and double-negative metamaterials
,”
Phys. Rev. E
68
,
026615
(
2003
).
29.
R. W.
Ziolkowski
, “
Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs
,”
Opt. Exp.
11
,
662
681
(
2003
).
30.
N.
Engheta
and
R. W.
Ziolkowski
,
Metamaterials: Physics and Engineering Explorations
(
John Wiley and Sons, Inc
.,
New York
,
2006
), Chap. 1.
31.
D. R.
Smith
and
J. B.
Pendry
, “
Homogenization of metamaterials by field averaging (invited paper)
,”
J. Opt. Soc. Am. B
23
,
391
403
(
2006
).
32.
N.
Yu
,
P.
Genevet
,
M. A.
Kats
,
F.
Aieta
,
J.-F.
Tetienne
,
F.
Capasso
, and
Z.
Gaburro
, “
Light propagation with phase discontinuities: Generalized laws of reflection and refraction
,”
Science
334
,
333
337
(
2011
).
33.
J. R.
Willis
, “
Effective constitutive relations for waves in composites and metamaterials
,”
Proc. R. Soc. A
467
,
1865
1879
(
2011
).
34.
J.
Nemirovsky
,
M. C.
Rechtsman
, and
M.
Segev
, “
Negative radiation pressure and negative effective refractive index via dielectric birefringence
,”
Opt. Express
20
,
8907
8914
(
2012
).
35.
Z.
Liu
,
X.
Zhang
,
Y.
Mao
,
Y. Y.
Zhu
,
Z.
Yang
,
C. T.
Chan
, and
P.
Sheng
, “
Locally resonant sonic materials
,”
Science
289
,
1734
1736
(
2000
).
36.
Z.
Liu
,
C. T.
Chan
, and
P.
Sheng
, “
Analytic model of phononic crystals with local resonances
,”
Phys. Rev. B
71
,
014103
(
2005
).
37.
S.
Guenneau
,
A.
Movchan
,
G.
Pétursson
, and
S. A.
Ramakrishna
, “
Acoustic metamaterials for sound focusing and confinement
,”
New J. Phys.
9
,
399
(
2007
).
38.
A. N.
Norris
, “
Acoustic metafluids
,”
J. Acoust. Soc. Am.
125
,
839
849
(
2009
).
39.
J. R.
Willis
, “
The construction of effective relations for waves in a composite
,”
C. R. Mec.
340
,
181
192
(
2012
).
40.
R.
Zhu
,
X. N.
Liu
,
G. L.
Huang
,
H.
Huang
, and
C. T.
Sun
, “
Microstructural design and experimental validation of elastic metamaterial plates with anisotropic mass density
,”
Phys. Rev. B
86
,
144307
(
2012
).
41.
A. P.
Liu
,
R.
Zhu
,
X. N.
Liu
,
G. K.
Hu
, and
G. L.
Huang
, “
Multi-displacement microstructure continuum modeling of anisotropic elastic metamaterials
,”
Wave Motion
49
,
411
426
(
2012
).
42.
A. N.
Norris
,
A. L.
Shuvalov
, and
A. A.
Kutsenko
, “
Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems
,”
Proc. R. Soc. A
468
,
1629
1651
(
2012
).
43.
Z.
Liang
and
J.
Li
, “
Extreme acoustic metamaterial by coiling up space
,”
Phys. Rev. Lett.
108
,
114301
(
2012
).
44.
M. R.
Haberman
and
M. D.
Guild
, “
Acoustic metamaterials
,”
Phys. Today
69
(
6
),
42
48
(
2016
).
45.
H.
Nassar
,
H.
Chen
,
A. N.
Norris
,
M. R.
Haberman
, and
G. L.
Huang
, “
Non-reciprocal wave propagation in modulated elastic metamaterials
,”
Proc. R. Soc. A
473
,
20170188
(
2017
).
46.
W. T.
Thomson
, “
Transmission of elastic waves through a stratified solid medium
,”
J. Appl. Phys.
21
,
89
93
(
1950
).
47.
N. A.
Haskell
, “
The dispersion of surface waves on multilayered media
,”
Bull. Seismol. Soc. Am.
43
,
17
34
(
1953
).
48.
J. P.
Corones
, “
Bremmer series that correct parabolic approximations
,”
J. Math. Anal. Appl.
50
,
361
372
(
1975
).
49.
B.
Ursin
, “
Review of elastic and electromagnetic wave propagation in horizontally layered media
,”
Geophysics
48
,
1063
1081
(
1983
).
50.
L.
Fishman
and
J. J.
McCoy
, “
Derivation and application of extended parabolic wave theories. I. The factorized Helmholtz equation
,”
J. Math. Phys.
25
,
285
296
(
1984
).
51.
M. V.
de Hoop
, “
Generalization of the Bremmer coupling series
,”
J. Math. Phys.
37
,
3246
3282
(
1996
).
52.
K.
Wapenaar
, “
Unified matrix-vector wave equation, reciprocity and representations
,”
Geophys. J. Int.
216
,
560
583
(
2019
).
53.
C. P. A.
Wapenaar
and
A. J.
Berkhout
,
Elastic Wave Field Extrapolation
(
Elsevier
,
Amsterdam
,
1989
), Chap. 3.
54.
A. J.
Haines
, “
Multi-source, multi-receiver synthetic seismograms for laterally heterogeneous media using F-K domain propagators
,”
Geophys. J. Int.
95
,
237
260
(
1988
).
55.
B. L. N.
Kennett
,
K.
Koketsu
, and
A. J.
Haines
, “
Propagation invariants, reflection and transmission in anisotropic, laterally heterogeneous media
,”
Geophys. J. Int.
103
,
95
101
(
1990
).
56.
K.
Koketsu
,
B. L. N.
Kennett
, and
H.
Takenaka
, “
2-D reflectivity method and synthetic seismograms for irregularly layered structures—II. Invariant embedding approach
,”
Geophys. J. Int.
105
,
119
130
(
1991
).
57.
H.
Takenaka
,
B. L. N.
Kennett
, and
K.
Koketsu
, “
The integral operator representation of propagation invariants for elastic waves in irregularly layered media
,”
Wave Motion
17
,
299
317
(
1993
).
58.
K.
Wapenaar
,
F.
Broggini
,
E.
Slob
, and
R.
Snieder
, “
Three-dimensional single-sided Marchenko inverse scattering, data-driven focusing, Green's function retrieval, and their mutual relations
,”
Phys. Rev. Lett.
110
,
084301
(
2013
).
59.
P. L.
Stoffa
,
Tau-p—A Plane Wave Approach to the Analysis of Seismic Data
(
Kluwer Academic Publishers
,
Dordrecht
) (
1989
), p.
15
.
60.
K.
Wapenaar
,
J.
Fokkema
,
M.
Dillen
, and
P.
Scherpenhuijsen
, “
One-way acoustic reciprocity and its applications in multiple elimination and time-lapse seismics
,” in
SEG, Expanded Abstracts
(
SEG
,
Tulsa, OK
,
2000
), pp.
2377
2380
.
61.
L.
Amundsen
, “
Elimination of free-surface related multiples without need of the source wavelet
,”
Geophysics
66
,
327
341
(
2001
).
62.
B. L. N.
Kennett
and
N. J.
Kerry
, “
Seismic waves in a stratified half-space
,”
Geophys. J. R. Astron. Soc.
57
,
557
584
(
1979
).
63.
K.
Wapenaar
,
J.
Thorbecke
,
J.
van der Neut
,
F.
Broggini
,
E.
Slob
, and
R.
Snieder
, “
Green's function retrieval from reflection data, in absence of a receiver at the virtual source position
,”
J. Acoust. Soc. Am.
135
,
2847
2861
(
2014
).
64.
G. A.
Meles
,
K.
Wapenaar
, and
J.
Thorbecke
, “
Virtual plane-wave imaging via Marchenko redatuming
,”
Geophys. J. Int.
214
,
508
519
(
2018
).
You do not currently have access to this content.