A classic paradigm used to quantify the perceptual weighting of binaural spatial cues requires a listener to adjust the value of one cue, while the complementary cue is held constant. Adjustments are made until the auditory percept appears centered in the head, and the values of both cues are recorded as a trading relation (TR), most commonly in μs interaural time difference per dB interaural level difference. Interestingly, existing literature has shown that TRs differ according to the cue being adjusted. The current study investigated whether cue-specific adaptation, which might arise due to the continuous, alternating presentation of signals during adjustment tasks, could account for this poorly understood phenomenon. Three experiments measured TRs via adjustment and via lateralization of single targets in virtual reality (VR). Targets were 500 Hz pure tones preceded by silence or by adapting trains that held one of the cues constant. VR removed visual anchors and provided an intuitive response technique during lateralization. The pattern of results suggests that adaptation can account for cue-dependent TRs. In addition, VR seems to be a viable tool for psychophysical tasks.

1.
Banister
,
H.
(
1926
). “
Three experiments on the localization of tones
,”
Br. J. Psychol.
16
(
4
),
265
292
.
2.
Braasch
,
J.
(
2003
). “
Localization in the presence of a distracter and reverberation in the frontal horizontal plane: III. The role of interaural level differences
,”
Acta Acust. united Ac.
89
(
4
),
674
692
.
3.
Brown
,
A. D.
, and
Stecker
,
G. C.
(
2013
). “
The precedence effect: Fusion and lateralization measures for headphone stimuli lateralized by interaural time and level differences
,”
J. Acoust. Soc. Am.
133
(
5
),
2883
2898
.
4.
Brugge
,
J. F.
,
Dubrovsky
,
N.
,
Aiktin
,
L.
, and
Anderson
,
D. J.
(
1969
). “
Sensitivity of single neurons in auditory cortex of cat to binaural tonal stimulation; effects of varying interaural time and intensity
,”
J. Neurophysiol.
32
,
1005
1024
.
5.
Canévet
,
G.
, and
Meunier
,
S.
(
1994
). “
Auditory adaptation and localization
,”
Acustica
80
(
3
),
311
314
.
6.
Canévet
,
G.
, and
Meunier
,
S.
(
1996
). “
Effect of adaptation on auditory localization and lateralization
,”
Acta Acust. united Ac.
82
(
1
),
149
157
.
7.
Dahmen
,
J. C.
,
Keating
,
P.
,
Nodal
,
F. R.
,
Schulz
,
A. L.
, and
King
,
A. J.
(
2010
). “
Adaptation to stimulus statistics in the perception and neural representation of auditory space
,”
Neuron
66
(
6
),
937
948
.
8.
David
,
E.
, Jr.
,
Guttman
,
N.
, and
van Bergeijk
,
W.
(
1959
). “
Binaural interaction of high-frequency complex stimuli
,”
J. Acoust. Soc. Am.
31
(
6
),
774
782
.
9.
Dean
,
I.
,
Harper
,
N. S.
, and
McAlpine
,
D.
(
2005
). “
Neural population coding of sound level adapts to stimulus statistics
,”
Nat. Neurosci.
8
(
12
),
1684
1689
.
10.
Deatherage
,
B. H.
, and
Hirsh
,
I. J.
(
1959
). “
Auditory localization of clicks
,”
J. Acoust. Soc. Am.
31
(
4
),
486
492
.
11.
Gilkey
,
R. H.
,
Good
,
M. D.
,
Ericson
,
M. A.
,
Brinkman
,
J.
, and
Stewart
,
J. M.
(
1995
). “
A pointing technique for rapidly collecting localization responses in auditory research
,”
Behav. Res. Methods
27
(
1
),
1
11
.
12.
Gleiss
,
H.
,
Encke
,
J.
,
Lingner
,
A.
,
Jennings
,
T. R.
,
Brosel
,
S.
,
Kunz
,
L.
, and
Pecka
,
M.
(
2019
). “
Cooperative population coding facilitates efficient sound-source separability by adaptation to input statistics
,”
PLoS Biol.
17
(
7
),
e3000150
.
13.
Hafter
,
E. R.
, and
Carrier
,
S. C.
(
1972
). “
Binaural interaction in low-frequency stimuli: The inability to trade time and intensity completely
,”
J. Acoust. Soc. Am.
51
(
6B
),
1852
1862
.
14.
Hafter
,
E. R.
, and
Jeffress
,
L. A.
(
1968
). “
Two-image lateralization of tones and click
,”
J. Acoust. Soc. Am.
44
(
2
),
563
569
.
15.
Harris
,
G. G.
(
1960
). “
Binaural interactions of impulsive stimuli and pure tones
,”
J. Acoust. Soc. Am.
32
(
6
),
685
692
.
16.
Higgins
,
N. C.
,
McLaughlin
,
S. A.
,
Rinne
,
T.
, and
Stecker
,
G. C.
(
2017
). “
Evidence for cue-independent spatial representation in the human auditory cortex during active listening
,”
Proc. Natl. Acad. Sci.
114
(
36
),
E7602
E7611
.
17.
Ignaz
,
A.
,
Lang
,
A.-G.
, and
Buchner
,
A.
(
2014
). “
The impact of reference tones on the adjustment of interaural cues
,”
J. Acoust. Soc. Am.
135
(
4
),
1986
1992
.
18.
Jeffress
,
L. A.
, and
Taylor
,
R. W.
(
1961
). “
Lateralization vs localization
,”
J. Acoust. Soc. Am.
33
(
4
),
482
483
.
19.
Joris
,
P. X.
,
Michelet
,
P.
,
Franken
,
T. P.
, and
Mc Laughlin
,
M.
(
2008
). “
Variations on a dexterous theme: Peripheral time–intensity trading
,”
Hear. Res.
238
(
1
),
49
57
.
20.
Joris
,
P. X.
,
Smith
,
P. H.
, and
Yin
,
T. C.
(
1998
). “
Coincidence detection in the auditory system: 50 years after Jeffress
,”
Neuron
21
(
6
),
1235
1238
.
21.
Kappauf
,
W. E.
(
1975
). “
Regression effect in judgments to determine equal response contours
,”
Atten. Percept. Psychophys.
17
(
4
),
405
410
.
22.
Kashino
,
M.
, and
Nishida
,
S. Y.
(
1998
). “
Adaptation in the processing of interaural time differences revealed by the auditory localization aftereffect
,”
J. Acoust. Soc. Am.
103
(
6
),
3597
3604
.
23.
Kopčo
,
N.
,
Best
,
V.
, and
Shinn-Cunningham
,
B. G.
(
2007
). “
Sound localization with a preceding distractor
,”
J. Acoust. Soc. Am.
121
(
1
),
420
432
.
24.
Krumbholz
,
K.
, and
Nobbe
,
A.
(
2002
). “
Buildup and breakdown of echo suppression for stimuli presented over headphones—The effects of interaural time and level differences
,”
J. Acoust. Soc. Am.
112
(
2
),
654
663
.
25.
Lang
,
A.-G.
, and
Buchner
,
A.
(
2008
). “
Relative influence of interaural time and intensity differences on lateralization is modulated by attention to one or the other cue
,”
J. Acoust. Soc. Am.
124
(
5
),
3120
3131
.
26.
Lang
,
A.-G.
, and
Buchner
,
A.
(
2009
). “
Relative influence of interaural time and intensity differences on lateralization is modulated by attention to one or the other cue: 500-Hz sine tones
,”
J. Acoust. Soc. Am.
126
(
5
),
2536
2542
.
27.
Leys
,
C.
,
Ley
,
C.
,
Klein
,
O.
,
Bernard
,
P.
, and
Licata
,
L.
(
2013
). “
Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median
,”
J. Exp. Social Psychol.
49
(
4
),
764
766
.
28.
Lingner
,
A.
,
Pecka
,
M.
,
Leibold
,
C.
, and
Grothe
,
B.
(
2018
). “
A novel concept for dynamic adjustment of auditory space
,”
Sci. Rep.
8
(
1
),
1
12
.
29.
Loftus
,
W. C.
,
Bishop
,
D. C.
,
Saint Marie
,
R. L.
, and
Oliver
,
D. L.
(
2004
). “
Organization of binaural excitatory and inhibitory inputs to the inferior colliculus from the superior olive
,”
J. Compar. Neurol.
472
(
3
),
330
344
.
30.
Macpherson
,
E. A.
, and
Middlebrooks
,
J. C.
(
2002
). “
Listener weighting of cues for lateral angle: The duplex theory of sound localization revisited
,”
J. Acoust. Soc. Am.
111
(
5
),
2219
2236
.
31.
Magnusson
,
A. K.
,
Park
,
T. J.
,
Pecka
,
M.
,
Grothe
,
B.
, and
Koch
,
U.
(
2008
). “
Retrograde GABA signaling adjusts sound localization by balancing excitation and inhibition in the brainstem
,”
Neuron
59
(
1
),
125
137
.
32.
Makous
,
J. C.
, and
Middlebrooks
,
J. C.
(
1990
). “
Two-dimensional sound localization by human listeners
,”
J. Acoust. Soc. Am.
87
(
5
),
2188
2200
.
33.
Meunier
,
S.
,
Bodden
,
M.
,
Canévet
,
G.
,
Grabke
,
J.
, and
Handmann
,
U.
(
1996
). “
Auditory adaptation and localization: Effect of frequency and bandwidth
,”
Acustica
82
,
S215
S215
.
34.
Moushegian
,
G.
, and
Jeffress
,
L. A.
(
1959
). “
Role of interaural time and intensity differences in the lateralization of low-frequency tones
,”
J. Acoust. Soc. Am.
31
(
11
),
1441
1445
.
35.
Phillips
,
D. P.
,
Carmichael
,
M. E.
, and
Hall
,
S. E.
(
2006
). “
Interaction in the perceptual processing of interaural time and level differences
,”
Hear. Res.
211
(
1
),
96
102
.
36.
R Core Team.
(
2016
). “
R: A language and environment for statistical computing
,” R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (Last viewed July 16, 2020).
37.
Sarkar
,
D.
(
2008
).
Lattice: Multivariate Data Visualization with R
(
Springer
,
New York
).
38.
Shaxby
,
J.
, and
Gage
,
F.
(
1932
). “
Studies in the localization of sound
,”
Med. Res. Council (Brit.) Spec. Rep. Ser.
166
,
1
32
.
39.
Stange
,
A.
,
Myoga
,
M. H.
,
Lingner
,
A.
,
Ford
,
M. C.
,
Alexandrova
,
O.
,
Felmy
,
F.
,
Pecka
,
M.
,
Siveke
,
I.
, and
Grothe
,
B.
(
2013
). “
Adaptation in sound localization: From GABA B receptor–mediated synaptic modulation to perception
,”
Nat. Neurosci.
16
(
12
),
1840
.
40.
Stecker
,
G. C.
(
2010
). “
Trading of interaural differences in high-rate Gabor click trains
,”
Hear. Res.
268
(
1
),
202
212
.
41.
Stecker
,
G. C.
(
2019
). “
Using virtual reality to assess auditory performance
,”
Hear. J.
72
(
6
),
20
22
.
42.
Thurlow
,
W. R.
, and
Jack
,
C. E.
(
1973
). “
Some determinants of localization-adaptation effects for successive auditory stimuli
,”
J. Acoust. Soc. Am.
53
(
6
),
1573
1577
.
43.
Trahiotis
,
C.
, and
Kappauf
,
W. E.
(
1978
). “
Regression interpretation of differences in time-intensity trading ratios obtained in studies of laterality using the method of adjustment
,”
J. Acoust. Soc. Am.
64
(
4
),
1041
1047
.
44.
van Bergeijk
,
W. A.
(
1962
). “
Variation on a theme of Bekesy: A model of binaural interaction
,”
J. Acoust. Soc. Am.
34
(
9B
),
1431
1437
.
45.
Van Veen
,
H. A.
,
Distler
,
H. K.
,
Braun
,
S. J.
, and
Bülthoff
,
H. H.
(
1998
). “
Navigating through a virtual city: Using virtual reality technology to study human action and perception
,”
Future Gen. Comput. Syst.
14
(
3–4
),
231
242
.
46.
Whitworth
,
R. H.
, and
Jeffress
,
L. A.
(
1961
). “
Time vs intensity in the localization of tones
,”
J. Acoust. Soc. Am.
33
(
7
),
925
929
.
47.
Wightman
,
F. L.
, and
Kistler
,
D. J.
(
1989
). “
Headphone simulation of free-field listening. I: Stimulus synthesis
,”
J. Acoust. Soc. Am.
85
(
2
),
858
867
.
48.
Young
,
L. L.
, and
Levine
,
J.
(
1977
). “
Time-intensity trades revisited
,”
J. Acoust. Soc. Am.
61
(
2
),
607
609
.
You do not currently have access to this content.