The narrow-angle parabolic equation (NAPE) with the effective sound speed approximation (ESSA) is widely used for sound and infrasound propagation in a moving medium such as the atmosphere. However, it is valid only for angles less than 20° with respect to the nominal propagation direction. In this paper, the wave equation and extra-wide-angle parabolic equation (EWAPE) for high-frequency (short-wavelength) sound waves in a moving medium with arbitrary Mach numbers are derived without the ESSA. For relatively smooth variations in the medium velocity, the EWAPE is valid for propagation angles up to 90°. Using the Padé (n,n) series expansion and narrow-angle approximation, the EWAPE is reduced to the wide-angle parabolic equation (WAPE) and NAPE. Versions of these equations are then formulated for low Mach numbers, which is the case that is usually considered in the literature. The phase errors pertinent to the equations considered are studied. It is shown that the equations for low Mach numbers and the WAPE with the ESSA are applicable only under rather restrictive conditions on the medium velocity. An effective numerical implementation of the WAPE for arbitrary Mach numbers in the Padé (1,1) approximation is developed and applied to sound propagation in the atmosphere.

1.
A.
Le Pichon
,
E.
Blanc
, and
A.
Hauchecorne
(eds.),
Infrasound Monitoring for Atmospheric Studies
(
Springer
,
Dordrecht
,
2010
),
735
pp.
2.
V. E.
Ostashev
and
D. K.
Wilson
,
Acoustics in Moving Inhomogeneous Media
, second ed. (
CRC Press
,
Boca Raton, FL
,
2015
),
521
pp.
3.
E.
Salomons
,
Computational Atmospheric Acoustics
(
Kluwer Academic
,
Dordrecht
,
2001
),
335
pp.
4.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
, second ed. (
Springer
,
New York
,
2011
), pp.
457
529
.
5.
D.
Lee
and
S. T.
McDaniel
,
Ocean Acoustic Propagation by Finite Difference Methods
(
Pergamon
,
New York
,
1988
), pp.
305
423
.
6.
M. D.
Collins
, “
A split-step Padé solution for the parabolic equation method
,”
J. Acoust. Soc. Am.
93
,
1736
1742
(
1993
).
7.
M. D.
Collins
, “
Applications and time-domain solution of higher-order parabolic equations in underwater acoustics
,”
J. Acoust. Soc. Am.
86
,
1097
1102
(
1989
).
8.
L.-J.
Gallin
,
M.
Rénier
,
É.
Gaudard
,
Th.
Farges
,
R.
Marchiano
, and
F.
Coulouvrat
, “
One-way approximation for the simulation of weak shock wave propagation in atmospheric flows
,”
J. Acoust. Soc. Am.
135
,
2559
2570
(
2014
).
9.
F.
Dagrau
,
M.
Rénier
,
R.
Marchiano
, and
F.
Coulouvrat
, “
Acoustic shock wave propagation in a heterogeneous medium: A numerical simulation beyond the parabolic approximation
,”
J. Acoust. Soc. Am.
130
,
20
32
(
2011
).
10.
J. F.
Claerbout
,
Fundamentals of Geophysical Data Processing
(
Blackwell
,
Oxford
,
1985
), pp.
194
207
.
11.
C. L.
Rino
,
The Theory of Scintillation with Applications in Remote Sensing
(
IEEE
,
Piscataway, NJ
,
2011
),
226
pp.
12.
V. E.
Ostashev
and
V. I.
Tatarskii
, “
Representation of the Helmholtz equation solution in the form of a series based on backscattering multiplicity
,”
Waves Random Media
5
,
125
135
(
1995
).
13.
M. D.
Feit
and
J. A.
Fleck
, “
Light propagation in graded-index fibers
,”
Appl. Opt.
17
,
3990
3998
(
1978
).
14.
V. E.
Ostashev
,
D.
Juvé
, and
P.
Blanc-Benon
, “
Derivation of a wide-angle parabolic equation for sound waves in inhomogeneous moving media
,”
Acta Acust. Acust.
83
(
3
),
455
460
(
1997
).
15.
Ph.
Blanc-Benon
,
L.
Dallois
, and
D.
Juvé
, “
Long range sound propagation in a turbulent atmosphere within the parabolic approximation
,”
Acta Acust. Acust.
87
(
6
),
659
669
(
2001
).
16.
V. E.
Ostashev
,
Ph.
Blanc-Benon
,
Júve
, and
L.
Dallois
, “
Wide angle parabolic equation for sound waves in a refractive, turbulent atmosphere
,” in
Proc. 10th Intern. Symp. on Long Range Sound Propagation
, Grenoble, France (
2002
, pp.
62
72
.
17.
O. A.
Godin
, “
Wide-angle parabolic equations for sound in a 3D inhomogeneous moving medium
,”
Doklady Phys.
47
(
9
),
643
646
(
2002
).
18.
J. F.
Lingevitch
,
M. D.
Collins
,
D. K.
Dacol
,
D. P.
Drob
,
J. C. W.
Rogers
, and
W. L.
Siegmann
, “
A wide angle and high Mach number parabolic equation
,”
J. Acoust. Soc. Am.
111
,
729
734
(
2002
).
19.
A. D.
Pierce
, “
Wave equation for sound in fluids with unsteady inhomogeneous flow
,”
J. Acoust. Soc. Am.
87
(
6
),
2292
2299
(
1990
).
20.
V. E.
Ostashev
,
M. B.
Muhlestein
, and
D. K.
Wilson
, “
Extra-wide-angle parabolic equations in motionless and moving media
,”
J. Acoust. Soc. Am.
145
(
2
)
1031
1047
(
2019
).
21.
D. I.
Blokhintzev
,
Acoustics of an inhomogeneous moving medium
(
Nauka
,
Moscow
,
1946
),
206
pp. [in Russian; English translation, Physics Dept. Brown Univ., Providence, RI (1956)].
22.
L.
Nghiem-Phu
and
F.
Tappert
, “
Parabolic equation modeling of the effects of ocean currents on sound transmission and reciprocity in the time domain
,”
J. Acoust. Soc. Am.
78
(
2
),
642
648
(
1985
).
23.
L. K.
Schubert
, “
Numerical study of sound refraction by a yet flow. II. Wave acoustics
,”
J. Acoust. Soc. Am.
51
(
2
),
447
463
(
1972
).
24.
A. R.
Wenzel
and
J. B.
Keller
, “
Propagation of acoustic waves in a turbulent medium
,”
J. Acoust. Soc. Am.
50
(
3
),
911
920
(
1971
).
25.
V. E.
Ostashev
, “
Equation for acoustic and gravity waves in a stratified moving medium
,”
Sov. Phys. Acoust.
33
(
1
),
95
96
(
1987
).
26.
N. N.
Zernov
and
V. E.
Gherm
, “
Strong scintillation of GNSS signals in the inhomogeneous ionosphere: 1. Theoretical background
,”
Radio Sci.
50
,
153
167
, (
2015
).
27.
E. Yu.
Gorodetskaya
,
A. I.
Malekhanov
,
A. G.
Sazontov
, and
N. K.
Vdovicheva
, “
Deep-water acoustic coherence at long ranges: Theoretical prediction and effects on large-array signal processing
,”
IEEE J. Ocean. Eng.
24
,
156
170
(
1999
).
28.
V. E.
Ostashev
,
D. K.
Wilson
,
S. N.
Vecherin
, and
S. L.
Collier
, “
Spatial-temporal coherence of acoustic signals propagating in a refractive, turbulent atmosphere
,”
J. Acoust. Soc. Am.
136
(
5
),
2414
2431
(
2014
).
29.
A.
Bamberger
,
B.
Engquist
,
L.
Halpern
, and
P.
Joly
, “
Higher order paraxial wave equation approximations in heterogeneous media
,”
SIAM J. Appl. Math.
48
,
129
154
(
1988
).
30.
D. J.
Thomson
and
N. R.
Chapman
, “
A wide-angle split-step algorithm for the parabolic equation
,”
J. Acoust. Soc. Am.
74
(
6
),
1848
1854
(
1983
).
31.
V. E.
Ostashev
,
D. K.
Wilson
,
L.
Liu
,
D. F.
Aldridge
,
N. P.
Symons
, and
D. H.
Marlin
, “
Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation
,”
J. Acoust. Soc. Am.
117
(
2
),
503
517
(
2005
).
32.
R.
Sabatini
,
O.
Marsden
,
C.
Bailly
, and
O.
Gainville
, “
Three-dimensional direct numerical simulation of infrasound propagation in the Earth's atmosphere
,”
J. Fluid Mech.
859
,
754
789
(
2019
).
33.
C. D.
de Groot-Hedlin
, “
Infrasound propagation in tropospheric ducts and acoustic shadow zones
,”
J. Acoust. Soc. Am.
142
(
4
),
1816
1827
(
2017
).
You do not currently have access to this content.