The finite size of a sound-absorbing material may lead to inaccurate results when measuring the acoustical properties of the material using the free-field measurement methods. In this study, a method of estimating the acoustical properties of locally reactive finite materials is proposed by combining a sound field model established by the boundary element method with an iteration algorithm. The proposed method takes the finiteness of the material into account, meaning that the size effect is removed and accurate results can be obtained. Numerical simulations and experiments of two kinds of materials, including a rigid floor and a porous material, are carried out to verify the validity of the proposed method. Results demonstrate that the proposed method is effective in estimating the acoustical properties of these two kinds of materials. Besides, a detailed analysis of the influences of the sample size, the source location, and the receiving point position is done in the simulations.

1.
Allard
,
J. F.
, and
Aknine
,
A.
(
1985
). “
Acoustic impedance measurements with a sound intensity meter
,”
Appl. Acoust.
18
,
69
75
.
2.
Allard
,
J. F.
,
Depollier
,
C.
, and
Lauriks
,
W.
(
1989
). “
Measurement and prediction of surface impedance at oblique incidence of a plastic foam of high flow resistivity
,”
J. Sound Vib.
132
,
51
60
.
3.
Allard
,
J. F.
, and
Sieben
,
B.
(
1985
). “
Measurements of acoustic impedance in a free field with two microphones and a spectrum analyzer
,”
J. Acoust. Soc. Am.
77
,
1617
1618
.
4.
Alvarez
,
J.
, and
Jacobsen
,
F.
(
2008
). “
An iterative method for determining the surface impedance of acoustic materials in situ
,” in
Proceedings of the 37th International Congress and Exhibit on Noise Control Engineering
, October 26–29,
Shanghai, China
.
5.
Attenborough
,
K.
(
1994
). “
A note on short-range ground characterization
,”
J. Acoust. Soc. Am.
95
,
3103
3108
.
6.
Barry
,
T. M.
(
1974
). “
Measurement of the absorption spectrum using correlation/spectral density techniques
,”
J. Acoust. Soc. Am.
55
,
1349
1351
.
7.
Bolton
,
J. S.
, and
Gold
,
E.
(
1984
). “
The application of cepstral techniques to the measurement of transfer functions and acoustical reflection coefficients
,”
J. Sound Vib.
93
,
217
233
.
8.
Brandão
,
E.
,
Flesch
,
R. C. C.
,
Lenzi
,
A.
, and
Flesch
,
C. A.
(
2011a
). “
Estimation of pressure-particle velocity impedance measurement uncertainty using the Monte Carlo method
,”
J. Acoust. Soc. Am.
130
,
EL25
EL31
.
9.
Brandão
,
E.
,
Lenzi
,
A.
, and
Cordioli
,
J.
(
2012
). “
Estimation and minimization of errors caused by sample size effect in the measurement of the normal absorption coefficient of a locally reactive surface
,”
Appl. Acoust.
73
,
543
556
.
10.
Brandão
,
E.
,
Lenzi
,
A.
, and
Paul
,
S.
(
2015
). “
A review of the in situ impedance and sound absorption measurement techniques
,”
Acta Acust. united Ac.
101
,
443
463
.
11.
Brandão
,
E.
,
Tijs
,
E.
,
Lenzi
,
A.
, and
de Bree
,
H. E.
(
2011b
). “
A comparison of three methods to calculate the surface impedance and absorption coefficient from measurements under free field or in situ conditions
,”
Acta Acust. united Ac.
97
,
1025
1033
.
12.
Champoux
,
Y.
,
Nicolas
,
J.
, and
Allard
,
J. F.
(
1988
). “
Measurement of acoustic impedance in a free field at low frequencies
,”
J. Sound Vib.
125
,
313
323
.
13.
Champoux
,
Y.
, and
Richarz
,
W. G.
(
1990
). “
An aid in the numerical integration for in situ acoustic impedance and absorption coefficient measurements
,”
J. Acoust. Soc. Am.
87
,
1809
1812
.
14.
COMSOL
(
2017
).
Comsol Multiphysics User's Guide, Version 5.3a
(
COMSOL, Inc.
Burlington, MA
).
15.
Cramond
,
A. J.
, and
Don
,
C. G.
(
1984
). “
Reflection of impulses as a method of determining acoustic impedance
,”
J. Acoust. Soc. Am.
75
,
382
389
.
16.
Crocker
,
M. J.
, and
Arenas
,
J. P.
(
2007
). “Use of sound-absorbing materials,” in
Handbook of Noise and Vibration Control
, edited by
M. J.
Crocker
(
Wiley
,
New York
), pp.
696
713
.
17.
Davies
,
J. C.
, and
Mulholland
,
K. A.
(
1979
). “
An impulse method of measuring normal impedance at oblique incidence
,”
J. Sound Vib.
67
,
135
149
.
18.
de Bruijn
,
A.
(
1973
). “
A mathematical analysis concerning the edge effect of sound absorbing materials
,”
Acta Acust. united Ac.
28
,
33
44
.
19.
Delany
,
M. E.
, and
Bazley
,
E. N.
(
1970
). “
Acoustical properties of fibrous absorbent materials
,”
Appl. Acoust.
3
,
105
116
.
20.
Di
,
X.
, and
Gilbert
,
K. E.
(
1993
). “
An exact Laplace transform formulation for a point source above a ground surface
,”
J. Acoust. Soc. Am.
93
,
714
720
.
21.
Garai
,
M.
(
1993
). “
Measurement of the sound-absorption coefficient in situ: The reflection method using periodic pseudo-random sequences of maximum length
,”
Appl. Acoust.
39
,
119
139
.
22.
Goines
,
L.
, and
Hagler
,
L.
(
2007
). “
Noise pollution: A modern plague
,”
South. Med. J.
100
,
287
294
.
23.
Hess
,
H. M.
,
Attenborough
,
K.
, and
Heap
,
N. W.
(
1990
). “
Ground characterization by short-range propagation measurements
,”
J. Acoust. Soc. Am.
87
,
1975
1986
.
24.
Hirosawa
,
K.
,
Takashima
,
K.
,
Nakagawa
,
H.
,
Kon
,
M.
,
Yamamoto
,
A.
, and
Lauriks
,
W.
(
2009
). “
Comparison of three measurement techniques for the normal absorption coefficient of sound absorbing materials in the free field
,”
J. Acoust. Soc. Am.
126
,
3020
3027
.
25.
Ingård
,
U.
, and
Bolt
,
R. H.
(
1951
). “
A free field method of measuring the absorption coefficient of acoustic materials
,”
J. Acoust. Soc. Am.
23
,
509
516
.
26.
ISO
(
1998
). ISO 10534-2, “Acoustic–Determination of sound absorption coefficient and impedance in impedance tubes–Part 2: Transfer-functions method” (
ISO
,
Geneva, Switzerland
).
27.
ISO
(
2004
). ISO 354, “Acoustics–Measurement of sound absorption in a reverberation room” (
ISO
,
Geneva, Switzerland
).
28.
Kimura
,
K.
, and
Yamamoto
,
K.
(
2002
). “
The required sample size in measuring oblique incidence absorption coefficient experimental study
,”
Appl. Acoust.
63
,
567
578
.
29.
Langer
,
P.
,
Maeder
,
M.
,
Guist
,
C.
,
Krause
,
M.
, and
Marburg
,
S.
(
2017
). “
More than six elements per wavelength: The practical use of structural finite element models and their accuracy
,”
J. Comput. Acoust.
25
,
1
23
.
30.
Lanoye
,
R.
,
de Bree
,
H. E.
,
Lauriks
,
W.
, and
Vermeir
,
G.
(
2004
). “
A practical device to determine the reflection coefficient of acoustic materials in-situ based on a Microflown and microphone sensor
,” in
Proceedings of the International Conference on Noise Vibration and Engineering
, September 20–22,
Leuven, Belgium
, pp.
2665
2675
.
31.
Lanoye
,
R.
,
Vermeir
,
G.
,
Lauriks
,
W.
,
Kruse
,
R.
, and
Mellert
,
V.
(
2006
). “
Measuring the free field acoustic impedance and absorption coefficient of sound absorbing materials with a combined particle velocity-pressure sensor
,”
J. Acoust. Soc. Am.
119
,
2826
2831
.
32.
Li
,
J. F.
, and
Hodgson
,
M.
(
1997
). “
Use of pseudo-random sequences and a single microphone to measure surface impedance at oblique incidence
,”
J. Acoust. Soc. Am.
102
,
2200
2210
.
33.
Lin
,
W. L.
,
Bi
,
C. X.
,
Vorländer
,
M.
,
Zhang
,
Y. B.
, and
Opdam
,
R.
(
2016a
). “
In situ measurement of the absorption coefficient based on a time-domain subtraction technique with a particle velocity transducer
,”
Acta Acust. united Ac.
102
,
945
954
.
34.
Lin
,
W. L.
,
Bi
,
C. X.
, and
Zhang
,
Y. B.
(
2016b
). “
Measurement of reflection factor at oblique incidence with pressure-velocity transducers
,”
Noise Control Eng. J.
64
,
379
387
.
35.
Marburg
,
S.
(
2018a
). “
A pollution effect in the boundary element method for acoustic problems
,”
J. Theor. Comput. Acoust.
26
,
1
18
.
36.
Marburg
,
S.
(
2018b
). “Boundary element method for time-harmonic acoustic problems,” in
Computational Acoustics
, edited by
M.
Kaltenbacher
(
Springer
,
Vienna
), pp.
69
158
.
37.
Matsumoto
,
T.
,
Zheng
,
C.
,
Harada
,
S.
, and
Takahashi
,
T.
(
2010
). “
Explicit evaluation of hypersingular boundary integral equation for 3-D Helmholtz equation discretized with constant triangular element
,”
J. Comput. Sci. Technol.
4
,
194
206
.
38.
Minten
,
M.
,
Cops
,
A.
, and
Lauriks
,
W.
(
1988
). “
Absorption characteristics of an acoustic material at oblique incidence measured with the two-microphone technique
,”
J. Sound Vib.
120
,
499
510
.
39.
Mommertz
,
E.
(
1995
). “
Angle-dependent in-situ measurements of reflection coefficients using a subtraction technique
,”
Appl. Acoust.
46
,
251
263
.
40.
Nolan
,
M.
(
2020
). “
Estimation of angle-dependent absorption coefficients from spatially distributed in situ measurements
,”
J. Acoust. Soc. Am.
147
,
EL119
EL124
.
41.
Otsuru
,
T.
,
Tomiku
,
R.
,
Din
,
N. B. C.
,
Okamoto
,
N.
, and
Murakami
,
M.
(
2009
). “
Ensemble averaged surface normal impedance of material using an in-situ technique: Preliminary study using boundary element method
,”
J. Acoust. Soc. Am.
125
,
3784
3791
.
42.
Ottink
,
M.
,
Brunskog
,
J.
,
Jeong
,
C.-H.
,
Fernandez-Grande
,
E.
,
Trojgaard
,
P.
, and
Tiana-Roig
,
E.
(
2016
). “
In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers
,”
J. Acoust. Soc. Am.
139
,
41
52
.
43.
Richard
,
A.
, and
Fernandez-Grande
,
E.
(
2019
). “
Comparison of two microphone array geometries for surface impedance estimation
,”
J. Acoust. Soc. Am.
146
,
501
504
.
44.
Richard
,
A.
,
Fernandez-Grande
,
E.
,
Brunskog
,
J.
, and
Jeong
,
C.-H.
(
2017
). “
Estimation of surface impedance at oblique incidence based on sparse array processing
,”
J. Acoust. Soc. Am.
141
,
4115
4125
.
45.
Takahashi
,
Y.
,
Otsuru
,
T.
, and
Tomiku
,
R.
(
2005
). “
In situ measurements of surface impedance and absorption coefficients of porous materials using two microphones and ambient noise
,”
Appl. Acoust.
66
,
845
865
.
46.
Tamura
,
M.
(
1990
). “
Spatial Fourier transform method of measuring reflection coefficients at oblique incidence. I: Theory and numerical examples
,”
J. Acoust. Soc. Am.
88
,
2259
2264
.
47.
Thomasson
,
S. I.
(
1980
). “
On the absorption coefficient
,”
Acta Acust. united Ac.
44
,
265
273
.
48.
Tijs
,
E.
,
de Bree
,
H. E.
, and
Brandão
,
E.
(
2009
). “
In situ PU surface impedance measurements for quality control at the end of an assembly line
,” SAE International Paper No. 2009-01-2142.
49.
Yuzawa
,
M.
(
1975
). “
A method of obtaining the oblique incident sound absorption coefficient through an on-the-spot measurement
,”
Appl. Acoust.
8
,
27
41
.
You do not currently have access to this content.