Noise from a tactical aircraft can impact operations due to concerns regarding military personnel noise exposure and community annoyance and disturbance. The efficacy of mission planning can increase when the distinct, complex acoustic source mechanisms creating the noise are better understood. For each type of noise, equivalent acoustic source distributions are obtained from a tied-down F-35B operating at various engine conditions using the hybrid method for acoustic source imaging of Padois, Gauthier, and Berry [J. Sound Vib. 333, 6858–6868 (2014)]. The source distributions for the distinct noise types are obtained using different sections of a 71 element, ground-based linear array. Using a subarray close to the nozzle exit plane, source distributions are obtained for fine-scale turbulent mixing noise and broadband shock-associated noise, although grating lobes complicate interpretations at higher frequencies. Results for a subarray spanning the maximum sound region show that the multiple frequency peaks in tactical aircraft noise appear to originate from overlapping source regions. The observation of overlapping spatial extent of competing noise sources is supported by the coherence properties of the source distributions for the different subarrays.

1.
C.
Tam
,
M.
Golebiowski
, and
J.
Seiner
, “
On the two components of turbulent mixing noise from supersonic jets
,” in
Aeroacoustics Conference
(
1996
), p.
1716
.
2.
C. K.
Tam
,
K.
Viswanathan
,
K.
Ahuja
, and
J.
Panda
, “
The sources of jet noise: Experimental evidence
,”
J. Fluid Mech.
615
,
253
292
(
2008
).
3.
C. K. W.
Tam
and
K. B. M. Q.
Zaman
, “
Subsonic jet noise from nonaxisymmetric and tabbed nozzles
,”
AIAA J.
38
(
4
),
592
599
(
1983
).
4.
T. B.
Neilsen
,
A. B.
Vaughn
,
K. L.
Gee
,
S. H.
Swift
,
A. T.
Wall
,
J. M.
Downing
, and
M. M.
James
, “
Three-way spectral decompositions of high-performance military aircraft noise
,”
AIAA J.
57
(8),
3467
3479
(
2019
).
5.
T. B.
Neilsen
,
K. L.
Gee
,
A. T.
Wall
, and
M. M.
James
, “
Similarity spectra analysis of high-performance jet aircraft noise
,”
J. Acoust. Soc. Am.
133
(
4
),
2116
2125
(
2013
).
6.
M.
Harper-Bourne
and
M. J.
Fisher
, “
The noise from shock-waves in supersonic jets
,”
AGARD
11
,
1
13
(
1973
).
7.
S. A. E.
Miller
and
P. J.
Morris
, “
The prediction of broadband shock-associated noise including propagation effects
,”
Int. J. Aeroacoust.
11
(
7-8
),
755
781
(
2012
).
8.
T. D.
Norum
and
J. M.
Seiner
, “
Broadband shock noise from supersonic jets
,”
AIAA J.
20
(
1
),
68
73
(
1982
).
9.
C.-W.
Kuo
,
D. K.
McLaughlin
,
P. J.
Morris
, and
K.
Viswanathan
, “
Effects of jet temperature on broadband shock-associated noise
,”
AIAA J.
53
(
6
),
1515
1530
(
2014
).
10.
H. K.
Tanna
, “
An experimental study of jet noise part II: Shock associated noise
,”
J. Sound Vib.
50
(
3
),
429
444
(
1977
).
11.
P. K.
Ray
and
S. K.
Lele
, “
Sound generated by instability wave/shock-cell interaction in supersonic jets
,”
J. Fluid Mech.
587
,
173
215
(
2007
).
12.
P. J.
Morris
and
S. A. E.
Miller
, “
Prediction of broadband shock-associated noise using Reynolds-averaged Navier-Stokes computational fluid dynamics
,”
AIAA J.
48
(
12
),
2931
2944
(
2010
).
13.
A. B.
Vaughn
,
T. B.
Neilsen
,
K. L.
Gee
,
A. T.
Wall
,
J. Micah
Downing
, and
M. M.
James
, “
Broadband shock-associated noise from a high-performance military aircraft
,”
J. Acoust. Soc. Am.
144
(
3
),
EL242
EL247
(
2018
).
14.
B. J.
Tester
and
K. R.
Holland
, “
Estimating the sound power radiated by a nozzle-based source in a test cell using a phased array
,” in
21st AIAA/CEAS Aeroacoustics Conference
(
2015
), p.
2979
.
15.
K. L.
Gee
,
M.
Akamine
,
K.
Okamoto
,
T. B.
Neilsen
,
S.
Tsutsumi
,
S.
Teramoto
,
T.
Okunuki
, and
M.
Cook
, “
Characterization of supersonic laboratory-scale jet noise with vector acoustic intensity
,” in
23rd AIAA/CEAS Aeroacoustics Conference
(
2017
), p.
3519
.
16.
P.
Jordan
and
T.
Colonius
, “
Wave packets and turbulent jet noise
,”
Ann. Rev. Fluid Mech.
45
,
173
195
(
2013
).
17.
Y.
Khalighi
,
F.
Ham
,
J.
Nichols
,
S.
Lele
, and
P.
Moin
, “
Unstructured large eddy simulation for prediction of noise issued from turbulent jets in various configurations
,” in
17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference)
(
2011
), p.
2886
.
18.
T.
Suzuki
, “
A review of diagnostic studies on jet-noise sources and generation mechanisms of subsonically convecting jets
,”
Fluid Dyn. Res.
42
(
1
),
014001
(
2010
).
19.
A.
Towne
,
T.
Colonius
,
P.
Jordan
,
A. V.
Cavalieri
, and
G. A.
Bres
, “
Stochastic and nonlinear forcing of wavepackets in a Mach 0.9 jet
,” in 21st AIAA/CEAS Aeroacoustics Conference
(
2015
), p.
2217
.
20.
Q.
Leclere
,
A.
Pereira
,
C.
Bailly
,
J.
Antoni
, and
C.
Picard
, “
A unified formalism for acoustic imaging based on microphone array measurements
,”
Int. J. Aeroacoust.
16
(
4-5
),
431
456
(
2017
).
21.
R.
Merino-Martínez
,
P.
Sijtsma
,
M.
Snellen
,
T.
Ahlefeldt
,
J.
Antoni
,
C.
Bahr
,
D.
Blacodon
,
D.
Ernst
,
A.
Finez
, and
S.
Funke
, “
A review of acoustic imaging methods using phased microphone arrays
,”
CEAS Aeronaut. J.
10
(
1
),
197
230
(
2019
).
22.
T.
Padois
,
P.-A.
Gauthier
, and
A.
Berry
, “
Inverse problem with beamforming regularization matrix applied to sound source localization in closed wind-tunnel using microphone array
,”
J. Sound Vib.
333
(
25
),
6858
6868
(
2014
).
23.
R. P.
Dougherty
, “
Beamforming in acoustic testing
,” in
Aeroacoustic Measurements
(
Springer
,
New York
,
2002
), pp.
62
97
.
24.
J. P.
Erwin
,
P.
Panickar
,
P.
Vogel
, and
N.
Sinha
, “
Acoustic source localization of rectangular jets using large eddy simulation with numerical phased arrays
,” in
52nd Aerospace Sciences Meeting
(
2014
), p.
0179
.
25.
S. S.
Lee
and
J.
Bridges
, “
Phased-array study of dual-flow jet noise: Effect of nozzles and mixers
,” in
12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference)
(
2006
), p.
2647
.
26.
M.
Lee
and
J. S.
Bolton
, “
Source characterization of a subsonic jet by using near-field acoustical holography
,”
J. Acoust. Soc. Am.
121
(
2
),
967
977
(
2007
).
27.
D.
Long
, “
Jet noise source location via acoustic holography and shadowgraph imagery
,” in
14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference)
(
2008
), p.
2888
.
28.
S. R.
Venkatesh
,
D. R.
Polak
, and
S. J. A. J.
Narayanan
, “
Beamforming algorithm for distributed source localization and its application to jet noise
,” AIAA J.
41
(
7
),
1238
1246
(
2003
).
29.
D.
Papamoschou
and
A.
Dadvar
, “
Localization of multiple types of jet noise sources
,” in
12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference)
(
2006
), p.
2644
.
30.
R.
Schlinker
,
S.
Liljenberg
,
D.
Polak
,
K.
Post
,
C.
Chipman
, and
A.
Stern
, “
Supersonic jet noise characteristics and propagation: Engine and model scale
,” in
13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference)
(
2007
), p.
3623
.
31.
A. T.
Wall
,
K. L.
Gee
,
T. B.
Neilsen
,
D. W.
Krueger
, and
M. M.
James
, “
Cylindrical acoustical holography applied to full-scale jet noise
,”
J. Acoust. Soc. Am.
136
(
3
),
1120
1128
(
2014
).
32.
A. T.
Wall
,
K. L.
Gee
, and
T. B.
Neilsen
, “
Multisource statistically optimized near-field acoustical holography
,”
J. Acoust. Soc. Am.
137
(
2
),
963
975
(
2015
).
33.
A. T.
Wall
,
K. L.
Gee
,
T. B.
Neilsen
,
R. L.
McKinley
, and
M. M.
James
, “
Military jet noise source imaging using multisource statistically optimized near-field acoustical holography
,”
J. Acoust. Soc. Am.
139
(
4
),
1938
1950
(
2016
).
34.
R. P.
Dougherty
, “
Functional beamforming for aeroacoustic source distributions
,” in
20th AIAA/CEAS Aeroacoustics Conference
(
2014
), p.
3066
.
35.
B. M.
Harker
, “
Characterization of military aircraft jet noise using wavepacket analysis and other array processing methods
,” Dissertation,
Brigham Young University
,
Provo, UT
,
2017
.
36.
T.
Brooks
and
W.
Humphreys
, “
Extension of DAMAS phased array processing for spatial coherence determination (DAMAS-C)
,” in
12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference)
(
2006
), p.
2654
.
37.
V.
Fleury
,
J.
Bulte
, and
R.
Davy
, “
Determination of acoustic directivity from microphone array measurements using correlated monopoles
,” in
14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference)
(
2008
), p.
2855
.
38.
T.
Yardibi
,
J.
Li
,
P.
Stoica
,
N. S.
Zawodny
, and
L. N.
Cattafesta
 III
, “
A covariance fitting approach for correlated acoustic source mapping
,”
J. Acoust. Soc. Am.
127
(
5
),
2920
2931
(
2010
).
39.
T.
Yardibi
,
J.
Li
,
P.
Stoica
, and
L. N.
Cattafesta
 III
, “
Sparsity constrained deconvolution approaches for acoustic source mapping
,”
J. Acoust. Soc. Am.
123
(
5
),
2631
2642
(
2008
).
40.
U.
Michel
and
S.
Funke
, “
Noise source analysis of an aeroengine with a new inverse method SODIX
,” in
14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference)
(
2008
), p.
2860
.
41.
P. A.
Ravetta
,
R. A.
Burdisso
, and
W. F.
Ng
, “
Noise source localization and optimization of phased-array results
,”
AIAA J.
47
(
11
),
2520
2533
(
2009
).
42.
T.
Suzuki
, “
L1 generalized inverse beam-forming algorithm resolving coherent/incoherent, distributed and multipole sources
,”
J. Sound Vib.
330
(
24
),
5835
5851
(
2011
).
43.
R. P.
Dougherty
, “
Improved generalized inverse beamforming for jet noise
,”
Int. J. Aeroacoust.
11
(
3-4
),
259
289
(
2012
).
44.
F.
Presezniak
,
P. A.
Zavala
,
G.
Steenackers
,
K.
Janssens
,
J. R.
Arruda
,
W.
Desmet
, and
P.
Guillaume
, “
Acoustic source identification using a generalized weighted inverse beamforming technique
,”
Mech. Syst. Signal Process.
32
,
349
358
(
2012
).
45.
P.
Zavala
,
W.
De Roeck
,
K.
Janssens
,
J.
Arruda
,
P.
Sas
, and
W.
Desmet
, “
Generalized inverse beamforming with optimized regularization strategy
,”
Mech. Syst. Signal Process.
25
(
3
),
928
939
(
2011
).
46.
S. S.
Lee
and
J.
Bridges
, “
Phased-array measurements of single flow hot jets
,” in
11th AIAA/CEAS Aeroacoustics Conference
(
2005
), p.
2842
.
47.
L.
Brusniak
,
J.
Underbrink
,
E.
Nesbitt
,
D.
Lynch
, and
M.
Martinez
, “
Phased array measurements of full-scale engine exhaust noise
,” in
13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference)
(
2007
), p.
3612
.
48.
J. R.
Underbrink
, “
Pletharrays for aeroacoustic phased array applications
,” in
21st AIAA/CEAS Aeroacoustics Conference
(
2015
), p.
2978
.
49.
B. M.
Harker
,
K. L.
Gee
,
T. B.
Neilsen
,
A. T.
Wall
, and
M. M.
James
, “
Source characterization of full-scale tactical jet noise from phased-array measurements
,”
J. Acoust. Soc. Am.
146
(
1
),
665
680
(
2019
).
50.
C. B.
Goates
,
B. M.
Harker
,
T. B.
Neilsen
, and
K. L.
Gee
, “
Extending the bandwidth of an acoustic beamforming array using phase unwrapping and array interpolation
,”
J. Acoust. Soc. Am.
141
(
4
),
EL407
EL412
(
2017
).
51.
A. T.
Wall
,
K. M.
Leete
,
K. L.
Gee
,
T. B.
Neilsen
,
M. M.
James
, and
R. L.
McKinley
, “
Preliminary investigation of multilobe fighter jet noise sources using acoustical holography
,” in
23rd AIAA/CEAS Aeroacoustics Conference
(
2017
), p.
3520
.
52.
S. H.
Swift
,
K. L.
Gee
,
T. B.
Neilsen
,
A. T.
Wall
,
J. M.
Downing
, and
M. M.
James
, “
Spatiotemporal-correlation analysis of jet noise from a round nozzle high-performance aircraft
,” in
2018 AIAA/CEAS Aeroacoustics Conference
(
2018
), p.
3938
.
53.
K. M.
Leete
,
A. T.
Wall
,
K. L.
Gee
,
T. B.
Neilsen
,
M. M.
James
, and
J. M.
Downing
, “
Dependence of high-performance military aircraft noise on frequency and engine power
,” in
2018 AIAA/CEAS Aeroacoustics Conference
(
2018
), p.
2826
.
54.
T. F.
Brooks
and
W. M.
Humphreys
, “
A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays
,”
J. Sound Vib.
294
(
4-5
),
856
879
(
2006
).
55.
T. K.
Moon
and
W. C.
Stirling
,
Mathematical Methods and Algorithms for Signal Processing
(
Prentice Hall
,
Upper Saddle River, NJ
,
2000
), Vol.
1
.
56.
E. G.
Williams
, “
Regularization methods for near-field acoustical holography
,”
J. Acoust. Soc. Am.
110
(
4
),
1976
1988
(
2001
).
57.
B. M.
Harker
,
T. B.
Neilsen
,
K. L.
Gee
,
M. M.
James
, and
A. T.
Wall
, “
Spatiotemporal correlation analysis of jet noise from a high-performance military aircraft
,” in
21st AIAA/CEAS Aeroacoustics Conference
(
2015
), p.
2376
.
58.
M. M.
James
,
A. R.
Salton
,
J. M.
Downing
,
K. L.
Gee
,
T. B.
Neilsen
,
B. O.
Reichman
,
R.
McKinley
,
A. T.
Wall
, and
H.
Gallagher
, “
Acoustic emissions from F-35 aircraft during ground run-up
,” in
21st AIAA/CEAS Aeroacoustics Conference
(
2015
), p.
2375
.
59.
T. B.
Neilsen
,
A. B.
Vaughn
,
K. L.
Gee
,
S. H.
Swift
,
A. T.
Wall
,
J. M.
Downing
, and
M. M.
James
, “
Inclusion of broadband shock-associated noise in spectral decomposition of noise from high-performance military aircraft
,” in
2018 AIAA/CEAS Aeroacoustics Conference
(
2018
), p.
3146
.
60.
B. O.
Reichman
,
K. L.
Gee
,
T. B.
Neilsen
,
S. H.
Swift
, and
A. T.
Wall
, “
Acoustic shock formation in noise propagation during ground run-up operations of military aircraft
,” in
23rd AIAA/CEAS Aeroacoustics Conference
(
2017
), p.
4043
.
61.
K. L.
Gee
,
V. W.
Sparrow
,
M. M.
James
,
J. M.
Downing
,
C. M.
Hobbs
,
T. B.
Gabrielson
, and
A. A.
Atchley
, “
The role of nonlinear effects in the propagation of noise from high-power jet aircraft
,”
J. Acoust. Soc. Am.
123
(
6
),
4082
4093
(
2008
).
62.
C. K.
Tam
, “
Supersonic jet noise
,”
Ann. Rev. Fluid Mech.
27
(
1
),
17
43
(
1995
).
63.
J. A.
Ward
,
K. M.
Leete
,
K. L.
Gee
,
D. F.
Van Komen
,
T. B.
Neilsen
,
A. T.
Wall
,
M.
Downing
, and
M. M.
James
, “
Comparing two inverse array methods for source reconstructions of noise radiated from a high-performance jet aircraft
,”
J. Acoust. Soc. Am.
144
(
3
),
1671
1671
(
2018
).
64.
A. T.
Wall
,
M. D.
Gardner
,
K. L.
Gee
, and
T. B.
Neilsen
, “
Coherence length as a figure of merit in multireference near-field acoustical holography
,”
J. Acoust. Soc. Am.
132
(
3
),
EL215
EL221
(
2012
).
65.
B. M.
Harker
,
K. L.
Gee
,
T. B.
Neilsen
,
A. T.
Wall
, and
M. M.
James
, “
Phased-array measurements of full-scale military jet noise
,” in
20th AIAA/CEAS Aeroacoustics Conference
(
2014
), p.
3069
.
66.
A. B.
Vaughn
,
K. L.
Gee
,
S. H.
Swift
,
A. T.
Wall
,
J. M.
Downing
, and
M. M.
James
, “
Beamforming of supersonic jet noise for crackle-related events
,”
Proc. Mtgs. Acoust.
35
(
1
),
040003
(
2018
).
67.
C. K. W.
Tam
,
A. C.
Aubert
,
J. T.
Spyropoulos
, and
R. W.
Powers
, “
On the dominant noise components of tactical aircraft: Laboratory to full scale
,”
J. Sound Vib.
422
,
92
111
(
2018
).
You do not currently have access to this content.