The human phonation is characterized by periodical oscillations of the vocal folds with a complete glottis closure. In contrast, a glottal insufficiency (GI) represents an oscillation without glottis closure resulting in a breathy and weak voice. In this study, flow-induced oscillations of silicone vocal folds were modeled with and without glottis closure. The measurements comprised the flow pressure in the model, the generated sound, and the high-speed footage of the vocal fold motion. The analysis revealed that the sound signal for vocal fold oscillations without closure exhibits a lower number of harmonic tones with smaller amplitudes compared to the case with complete closure. The time series of the pressure signals showed small and periodical oscillations occurring less frequently and with smaller amplitude for the GI case. Accordingly, the pressure spectra include fewer harmonics similar to the sound. The analysis of the high-speed videos indicates that the strength of the pressure oscillations correlates with the divergence angle of the glottal duct during the closing motion. Physiologically, large divergence angles typically occur for a pronounced mucosal wave motion with glottis closure. Thus, the results indicate a correlation between the intensity of the mucosal wave and the development of harmonic tones.

1.
I. R.
Titze
,
The Myoelastic Aerodynamic Theory of Phonation
(
National Center for Voice and Speech
,
Denver, CO
,
2006
).
2.
I. R.
Titze
,
Principles of Voice Production
, 2nd ed. (
National Center for Voice and Speech
,
Denver, CO
,
2000
).
3.
K. N.
Stevens
, “
Acoustic phonetics
,” in
Current Studies in Linguistics
(
The MIT Press
,
Cambridge, MA
,
2000
).
4.
G.
Fant
,
Acoustic Theory of Speech Production
(
Mouton, Hague
,
The Netherlands
,
1960
).
5.
I. R.
Titze
, “
Nonlinear source-filter coupling in phonation: Theory
,”
J. Acoust. Soc. Am.
123
(
5
),
2733
2749
(
2008
).
6.
I. R.
Titze
,
T.
Riede
, and
P.
Popolo
, “
Nonlinear source-filter coupling in phonation: Vocal exercises
,”
J. Acoust. Soc. Am.
123
(
4
),
1902
1915
(
2008
).
7.
V.
Birk
,
S.
Kniesburges
,
M.
Semmler
,
D. A.
Berry
,
C.
Bohr
,
M.
Döllinger
, and
A.
Schützenberger
, “
Influence of glottal closure on the phonatory process in ex vivo porcine larynges
,”
J. Acoust. Soc. Am.
142
(
4
),
2197
2207
(
2017
).
8.
M.
Döllinger
,
S.
Kniesburges
,
D. A.
Berry
,
V.
Birk
,
O.
Wendler
,
C.
Alexiou
, and
A.
Schützenberger
, “
Investigation of phonatory characteristics using ex-vivo rabbit larynges
,”
J. Acoust. Soc. Am.
144
(
1
),
142
152
(
2018
).
9.
R.
Patel
,
D.
Dubrovskiy
, and
M.
Döllinger
, “
Characterizing vibratory kinematics in children and adults with high-speed digital imaging
,”
J. Speech Lang. Hear. Res.
57
,
674
686
(
2014
).
10.
B.
Fritzell
,
B.
Hammarberg
,
J.
Gauffin
,
I.
Karlsson
, and
J.
Sundberg
, “
Breathiness and insufficient vocal fold closure
,”
J. Phonet.
14
,
549
553
(
1986
).
11.
Z.
Zhang
, “
Compensation strategies in voice production with glottal insufficiency
,”
J. Voice
33
(
1
),
96
102
(
2019
).
12.
J. M.
Bhatt
and
S. P.
Verma
, “
Management of glottal insufficiency
,”
Otorhinolaringol
64
(
3
),
101
107
(
2014
).
13.
E.
Graham
,
V.
Angadi
,
J.
Sloggy
, and
J.
Stemple
, “
Contribution of glottal insufficiency to perceived breathiness in classically trained singers
,”
Med. Probl. Perform. Ar.
31
(
3
),
179
184
(
2016
).
14.
M.
Vaca
,
I.
Cobeta
,
E.
Mora
, and
P.
Reyes
, “
Clinical assessment of glottal insufficiency in age-related dysphonia
,”
J. Voice
31
(
1
),
128.e1
128.e5
(
2017
).
15.
M.
Södersten
and
P.
Lindestad
, “
Glottal closure and perceived breathiness during phonation in normally speaking subjects
,”
J. Speech Lang. Hear. Res.
33
(
3
),
601
611
(
1990
).
16.
L. A.
Rammage
,
R. C.
Peppard
, and
D. M.
Bless
, “
Aerodynamic, laryngoscopic, and perceptual-acoustic characteristics in dysphonic females with posterior glottal chinks: A retrospective study
,”
J. Voice
6
(
1
),
64
78
(
1992
).
17.
M.
Sördersten
,
S.
Hertegard
, and
B.
Hammarberg
, “
Glottal closure, transglottal airflow, and voice quality in healthy middle-aged women
,”
J. Voice
9
(
2
),
182
197
(
1995
).
18.
E. C.
Inwald
,
M.
Döllinger
,
M.
Schuster
,
U.
Eysholdt
, and
C.
Bohr
, “
Multiparametric analysis of vocal fold vibrations in healthy and disordered voices in high-speed imaging
,”
J. Voice
25
(
5
),
576
590
(
2011
).
19.
R. R.
Patel
,
A.
Dixon
,
A.
Richmond
, and
K. D.
Donohue
, “
Pediatric high speed digital imaging of vocal fold vibration: A normative pilot study of glottal closure and phase closure characteristics
,”
Int. J. Pediatr. Otorhinolaryngol.
76
(
7
),
954
959
(
2012
).
20.
M.
Kunduk
,
M.
Döllinger
,
A. J.
McWhorther
, and
J.
Lohscheller
, “
Assessment of the variability of vocal fold dynamics within and between recordings with high-speed imaging and by phonovibrogram
,”
Laryngoscope
120
,
981
987
(
2010
).
21.
J.
Hillenbrand
,
R. C.
Cleveland
, and
R. L.
Erickson
, “
Acoustic correlates of breathy vocal quality
,”
J. Speech Lang. Hear. Res.
37
(
4
),
769
778
(
1994
).
22.
J.
Hillenbrand
and
R. A.
Houde
, “
Acoustic correlates of breathy vocal quality: Dysphonic voices and continuous speech
,”
J. Speech Lang. Hear. Res.
39
(
2
),
311
321
(
1996
).
23.
D. M.
Hartl
,
S.
Hans
,
J.
Vaissiere
, and
D. F.
Brasnu
, “
Objective acoustic and aerodynamic measures of breathiness in paralytic dysphonia
,”
Eur. Arch. Otorhinolaryngol.
260
(
4
),
175
182
(
2003
).
24.
E.
Yumoto
,
W. J.
Gould
, and
E.
Baer
, “
Harmonics-to-noise ratio as an index of the degree of hoarseness
,”
J. Acoust. Soc. Am.
71
(
6
),
1544
1549
(
1982
).
25.
R.
Shrivastav
and
C. M.
Sapienza
, “
Objective measures of breathy voice quality obtained using an auditory model
,”
J. Acoust. Soc. Am.
114
(
4
),
2217
2224
(
2003
).
26.
V.
Birk
,
M.
Döllinger
,
A.
Sutor
,
D. A.
Berry
,
D.
Gedeon
,
M.
Traxdorf
,
O.
Wendler
,
C.
Bohr
, and
S.
Kniesburges
, “
Automated set-up for ex-vivo larynx experiments
,”
J. Acoust. Soc. Am.
141
(
3
),
1349
1359
(
2017
).
27.
D. D.
Deliyski
,
P. P.
Petrushev
,
H. S.
Bonilha
,
T. T.
Gerlach
,
B.
Martin-Harris
, and
R. E.
Hillman
, “
Clinical implementation of laryngeal high-speed videoendoscopy: Challenges and evolution
,”
Folia Phoniatr. Logop.
60
(
1
),
33
44
(
2006
).
28.
P.
Schlegel
,
M.
Semmler
,
M.
Kunduk
,
M.
Döllinger
,
C.
Bohr
, and
A.
Schützenberger
, “
Influence of analyzed sequence length on parameters in laryngeal high-speed videoendoscopy
,”
Appl. Sci.
8
(
12
),
2666
(
2018
).
29.
M.
Döllinger
and
D. A.
Berry
, “
Visualization and quantification of the medial surface dynamics of an excised human vocal fold during phonation
,”
J. Voice
20
(
3
),
401
413
(
2006
).
30.
A.
Bößenecker
,
D. A.
Berry
,
J.
Lohscheller
,
U.
Eysholdt
, and
M.
Döllinger
, “
Mucosal wave properties of a human vocal fold
,”
Acta Acust.
93
(
5
),
815
823
(
2007
).
31.
M.
Hirano
,
Clinical Examination of Voice
(
Springer
,
Vienna, Austria
,
1981
).
32.
M.
Döllinger
,
D.
Berry
, and
S.
Kniesburges
, “
Dynamic vocal fold parameters with changing adduction in ex-vivo hemilarynx experiments
,”
J. Acoust. Soc. Am.
139
(
5
),
2372
2385
(
2016
).
33.
L.
Oren
,
S.
Khosla
, and
E.
Gutmark
, “
Intraglottal geometry and velocity measurements in canine larynges
,”
J. Acoust. Soc. Am.
135
(
1
),
380
388
(
2014
).
34.
L.
Oren
,
S.
Koshla
, and
E.
Gutmark
, “
Medial surface dynamics as a function of subglottal pressure in a canine larynx model
,”
J. Voice
(in press).
35.
F.
Durst
,
U.
Heim
,
B.
Ünsal
, and
G.
Kullik
, “
Mass flow rate control system for time-dependent laminar and turbulent flow investigations
,”
Meas. Sci. Technol.
14
,
893
903
(
2003
).
36.
T. D.
Rossing
,
Handbook of Acoustics
(
Springer
,
New York
,
2007
).
37.
Z.
Zhang
,
J.
Neubauer
, and
D. A.
Berry
, “
The influence of subglottal acoustics on laboratory models of phonation
,”
J. Acoust. Soc. Am.
120
(
3
),
1558
1569
(
2006
).
38.
Z.
Zhang
,
J.
Neubauer
, and
D. A.
Berry
, “
Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds
,”
J. Acoust. Soc. Am.
120
(
5 Pt 1
),
2841
2849
(
2006
).
39.
S. L.
Thomson
,
L.
Mongeau
, and
F. H.
Frankel
, “
Physical and numerical flow-excited vocal fold model
,” in
Proceedings of the Third International Workshop MAVEBA
(
2003
).
40.
R. C.
Scherer
,
D.
Shinwari
,
K. J.
De Witt
,
C.
Zhang
,
B. R.
Kucinschi
, and
A. A.
Afjeh
, “
Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees
,”
J. Acoust. Soc. Am.
109
(
4
),
1616
1630
(
2001
).
41.
S.
Kniesburges
,
S. L.
Thomson
,
A.
Barney
,
M.
Triep
,
P.
Sidlof
,
J.
Horacek
,
C.
Brücker
, and
S.
Becker
, “
In vitro experimental investigation of voice production
,”
Curr. Bioinform.
6
(
3
),
305
322
(
2011
).
42.
R.
Mittal
,
B. D.
Erath
, and
M. W.
Plesniak
, “
Fluid dynamics of human phonation and speech
,”
Ann. Rev. Fluid Mech.
45
,
437
467
(
2013
).
43.
S.
Kniesburges
,
C.
Hesselmann
,
S.
Becker
,
E.
Schlücker
, and
M.
Döllinger
, “
Influence of vortical flow structures on the glottal jet location in the supraglottal region
,”
J. Voice
272
(
5
),
531
544
(
2013
).
44.
A.
Lodermeyer
,
S.
Becker
,
M.
Döllinger
, and
S.
Kniesburges
, “
Phase-locked flow field analysis in a synthetic human larynx model
,”
Exp. Fluids
56
,
77
(
2015
).
45.
S.
Kniesburges
, “
Fluid-structure-acoustic interaction during phonation in a synthetic larynx model
,” Ph.D. dissertation,
Friedrich-Alexander University Erlangen-Nürnberg
,
Shaker, Aachen, Germany
,
2014
.
46.
P.
Schlegel
,
M.
Kunduk
,
M.
Stingl
,
M.
Semmler
,
M.
Döllinger
,
C.
Bohr
, and
A.
Schützenberger
, “
Influence of spatial camera resolution in high-speed videoendoscopy on laryngeal parameters
,”
PLoS One
14
(
4
),
e0215168
(
2019
).
47.
I. R.
Titze
, “
Theoretical analysis of maximum flow declination rate versus maximum area declination rate in phonation
,”
J. Speech Lang. Hear. Res.
49
(
2
),
439
447
(
2006
).
48.
S.
Kniesburges
,
V.
Birk
,
A.
Lodermeyer
,
A.
Schützenberger
,
C.
Bohr
, and
S.
Becker
, “
Effect of the ventricular folds in a synthetic larynx model
,”
J. Biomech.
55
,
128
133
(
2017
).
49.
A.
Lodermeyer
,
M.
Tautz
,
S.
Becker
,
M.
Döllinger
,
V.
Birk
, and
S.
Kniesburges
, “
Aeroacoustic analysis of the human phonation process based on a hybrid acoustic piv approach
,”
Exp. Fluids
59
(
1
),
13
(
2018
).
50.
I. R.
Titze
, “
The physics of small-amplitude oscillation of the vocal folds
,”
J. Acoust. Soc. Am.
83
(
4
),
1536
1552
(
1988
).
51.
S. P.
Kumar
and
J. G.
Svec
, “
Kinematic model for simulating mucosal wave phenomena on vocal folds
,”
Biomed. Signal Process. Control
49
,
328
337
(
2019
).
52.
I. R.
Titze
,
S. S.
Schmidt
, and
M. R.
Titze
, “
Phonation threshold pressure in a physical model of the vocal fold mucosa
,”
J. Acoust. Soc. Am.
97
(
5
),
3080
3084
(
1995
).
53.
J. C.
Lucero
, “
A theoretical study of the hysteresis phenomenon at vocal foldoscillation onset-offset
,”
J. Acoust. Soc. Am.
105
(
1
),
423
431
(
1999
).
54.
M.
Döllinger
and
D. A.
Berry
, “
Computation of the three-dimensional medial surface dynamics of the vocal folds
,”
J. Biomech.
39
,
369
374
(
2006
).
55.
J.
Wendler
, “
Stroboscopy
,”
J. Voice
6
(
2
),
149
154
(
1992
).
56.
D. D.
Mehta
and
R. E.
Hillman
, “
Current role of stroboscopy in laryngeal imaging
,”
Curr. Opin. Otolaryngol. Head Neck Surg.
20
(
6
),
429
439
(
2012
).
You do not currently have access to this content.