Microbubble translations driven by ultrasound-induced radiation forces can be beneficial for applications in ultrasound molecular imaging and drug delivery. Here, the effect of size range in microbubble populations on their translations is investigated experimentally and theoretically. The displacements within five distinct size-isolated microbubble populations are driven by a standard ultrasound-imaging probe at frequencies ranging from 3 to 7 MHz, and measured using the multi-gate spectral Doppler approach. Peak microbubble displacements, reaching up to 10 μm per pulse, are found to describe transient phenomena from the resonant proportion of each bubble population. The overall trend of the statistical behavior of the bubble displacements, quantified by the total number of identified displacements, reveals significant differences between the bubble populations as a function of the transmission frequency. A good agreement is found between the experiments and theory that includes a model parameter fit, which is further supported by separate measurements of individual microbubbles to characterize the viscoelasticity of their stabilizing lipid shell. These findings may help to tune the microbubble size distribution and ultrasound transmission parameters to optimize the radiation-force translations. They also demonstrate a simple technique to characterize the microbubble shell viscosity, the fitted model parameter, from freely floating microbubble populations using a standard ultrasound-imaging probe.

1.
Acconcia
,
C.
,
Wright
,
A.
, and
Goertz
,
D.
(
2018
). “
Translational dynamics of individual microbubbles with millisecond scale ultrasound pulses
,”
J. Acoust. Soc. Am.
144
(
5
),
2859-2870
.
2.
Blue
,
L.
,
Guidi
,
F.
,
Vos
,
H.
,
Slagle
,
C.
,
Borden
,
M.
, and
Tortoli
,
P.
(
2018
). “
Plane-wave contrast imaging: A radiation force point of view
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
65
(
12
),
2296
2300
.
3.
Dayton
,
P.
,
Allen
,
J.
, and
Ferrara
,
K.
(
2002
). “
The magnitude of radiation force on ultrasound contrast agents
,”
J. Acoust. Soc. Am.
112
(
5
),
2183
2192
.
4.
Dayton
,
P.
,
Morgan
,
K.
,
Klibanov
,
A.
,
Brandenburger
,
G.
,
Nightingale
,
K.
, and
Ferrara
,
K.
(
1997
). “
A preliminary evaluation of the effects of primary and secondary radiation forces on acoustic contrast agents
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
(
6
),
1264
1277
.
5.
Doinikov
,
A.
(
2002
). “
Translational motion of a spherical bubble in an acoustic standing wave of high intensity
,”
Phys. Fluids
14
(
4
),
1420
1425
.
6.
Doinikov
,
A.
, and
Dayton
,
P.
(
2006
). “
Spatio-temporal dynamics of an encapsulated gas bubble in an ultrasound field
,”
J. Acoust. Soc. Am.
120
(
2
),
661
669
.
7.
Fan
,
Z.
,
Chen
,
D.
, and
Deng
,
C. X.
(
2014
). “
Characterization of the dynamic activities of a population of microbubbles driven by pulsed ultrasound exposure in sonoporation
,”
Ultrasound Med. Biol.
40
(
6
),
1260
1272
.
8.
Feshitan
,
J.
,
Chen
,
C.
,
Kwan
,
J.
, and
Borden
,
M.
(
2009
). “
Microbubble size isolation by differential centrifugation
,”
J. Colloid Interface Sci.
329
(
2
),
316
324
.
9.
Garbin
,
V.
,
Dollet
,
B.
,
Overvelde
,
M.
,
Cojoc
,
D.
,
Di Fabrizio
,
E.
,
van Wijngaarden
,
L.
,
Prosperetti
,
A.
,
de Jong
,
N.
,
Lohse
,
D.
, and
Versluis
,
M.
(
2009
). “
History force on coated microbubbles propelled by ultrasound
,”
Phys. Fluids
21
(
9
),
092003-1
092003-7
.
10.
Guidi
,
F.
,
Supponen
,
O.
,
Upadhyay
,
A.
,
Vos
,
H.
,
Borden
,
M.
, and
Tortoli
,
P.
(
2019
). “
Microbubble radiation force-induced translation in plane-wave versus focused transmission modes
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
57
(
1
),
1856
1865
.
11.
Guidi
,
F.
,
Vos
,
H.
,
Mori
,
R.
,
de Jong
,
N.
, and
Tortoli
,
P.
(
2010
). “
Microbubble characterization through acoustically-induced deflation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
57
(
1
),
193
202
.
12.
Igualada-Villodre
,
E.
,
Medina-Palomo
,
A.
,
Vega-Martínez
,
P.
, and
Rodríguez-Rodríguez
,
J.
(
2018
). “
Transient effects in the translation of bubbles insonated with acoustic pulses of finite duration
,”
J. Fluid Mech.
836
,
649
693
.
13.
Liu
,
Y.
,
Calvisi
,
M.
, and
Wang
,
Q.
(
2018
). “
Shape oscillation and stability of an encapsulated microbubble translating in an acoustic wave
,”
J. Acoust. Soc. Am.
144
(
4
),
2189
2200
.
14.
Lum
,
A.
,
Borden
,
M.
,
Dayton
,
P.
,
Kruse
,
D.
,
Simon
,
S.
, and
Ferrara
,
K.
(
2006
). “
Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles
,”
J. Control. Rel.
111
(
1-2
),
128
134
.
15.
Lum
,
J.
,
Dove
,
J.
,
Murray
,
T.
, and
Borden
,
M.
(
2016
). “
Single microbubble measurements of lipid monolayer viscoelastic properties for small-amplitude oscillations
,”
Langmuir
32
(
37
),
9410
9417
.
16.
Lum
,
J.
,
Stobbe
,
D.
,
Borden
,
M.
, and
Murray
,
T.
(
2018
). “
Photoacoustic technique to measure temperature effects on microbubble viscoelastic properties
,”
Appl. Phys. Lett.
112
(
11
),
111905-1
111905-5
.
17.
Magnaudet
,
J.
, and
Legendre
,
D.
(
1998
). “
The viscous drag force on a spherical bubble with a time-dependent radius
,”
Phys. Fluids
10
(
3
),
550
554
.
18.
Marmottant
,
P.
,
van der Meer
,
S.
,
Emmer
,
M.
,
Versluis
,
M.
,
de Jong
,
N.
,
Hilgenfeldt
,
S.
, and
Lohse
,
D.
(
2005
). “
A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture
,”
J. Acoust. Soc. Am.
118
(
6
),
3499
3505
.
19.
Mettin
,
R.
,
Akhatov
,
I.
,
Parlitz
,
U.
,
Ohl
,
C. D.
, and
Lauterborn
,
W.
(
1997
). “
Bjerknes forces between small cavitation bubbles in a strong acoustic field
,”
Phys. Rev. E
56
(
3
),
2924
2931
.
20.
Overvelde
,
M.
,
Garbin
,
V.
,
Dollet
,
B.
,
de Jong
,
N.
,
Lohse
,
D.
, and
Versluis
,
M.
(
2011
). “
Dynamics of coated microbubbles adherent to a wall
,”
Ultrasound Med. Biol.
37
(
9
),
1500
1508
.
21.
Palanchon
,
P.
,
Tortoli
,
P.
,
Bouakaz
,
A.
,
Versluis
,
M.
, and
de Jong
,
N.
(
2005
). “
Optical observations of acoustical radiation force effects on individual air bubbles
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
(
1
),
104
110
.
22.
Patil
,
A.
,
Rychak
,
J.
,
Allen
,
J.
,
Klibanov
,
A.
, and
Hossack
,
J.
(
2009
). “
Dual frequency method for simultaneous translation and real-time imaging of ultrasound contrast agents within large blood vessels
,”
Ultrasound Med. Biol.
35
(
12
),
2021
2030
.
23.
Reddy
,
A.
, and
Szeri
,
A.
(
2002
). “
Coupled dynamics of translation and collapse of acoustically driven microbubbles
,”
J. Acoust. Soc. Am.
112
(
4
),
1346
1352
.
24.
Rensen
,
J.
,
Bosman
,
D.
,
Magnaudet
,
J.
,
Ohl
,
C.-D.
,
Prosperetti
,
A.
,
Tögel
,
R.
,
Versluis
,
M.
, and
Lohse
,
D.
(
2001
). “
Spiraling bubbles: How acoustic and hydrodynamic forces compete
,”
Phys. Rev. Lett.
86
(
21
),
4819
4822
.
25.
Sarkar
,
K.
,
Shi
,
W.
,
Chatterjee
,
D.
, and
Forsberg
,
F.
(
2005
). “
Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation
,”
J. Acoust. Soc. Am.
118
(
1
),
539
550
.
26.
Segers
,
T.
,
Gaud
,
E.
,
Versluis
,
M.
, and
Frinking
,
P.
(
2018
). “
High-precision acoustic measurements of the nonlinear dilatational elasticity of phospholipid coated monodisperse microbubbles
,”
Soft Matter
14
(
47
),
9550
9561
.
27.
Segers
,
T.
, and
Versluis
,
M.
(
2014
). “
Acoustic bubble sorting for ultrasound contrast agent enrichment
,”
Lab Chip
14
(
10
),
1705
1714
.
28.
Strasberg
,
M.
(
1953
). “
The pulsation frequency of nonspherical gas bubbles in liquids
,”
J. Acoust. Soc. Am.
25
(
3
),
536
537
.
29.
Tortoli
,
P.
,
Bassi
,
L.
,
Boni
,
E.
,
Dallai
,
A.
,
Guidi
,
F.
, and
Ricci
,
S.
(
2009
). “
Ula-op: An advanced open platform for ultrasound research
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
56
(
10
),
2207
2216
.
30.
Tortoli
,
P.
,
Pratesi
,
M.
, and
Michelassi
,
V.
(
2000
). “
Doppler spectra from contrast agents crossing an ultrasound field
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
(
3
),
716
725
.
31.
van der Meer
,
S.
,
Dollet
,
B.
,
Voormolen
,
M.
,
Chin
,
C.
,
Bouakaz
,
A.
,
de Jong
,
N.
,
Versluis
,
M.
, and
Lohse
,
D.
(
2007
). “
Microbubble spectroscopy of ultrasound contrast agents
,”
J. Acoust. Soc. Am.
121
(
1
),
648
656
.
32.
van Rooij
,
T.
,
Luan
,
Y.
,
Renaud
,
G.
,
van der Steen
,
A.
,
Versluis
,
M.
,
de Jong
,
N.
, and
Kooiman
,
K.
(
2015
). “
Non-linear response and viscoelastic properties of lipid-coated microbubbles: DSPC versus DPPC
,”
Ultrasound Med. Biol.
41
(
5
),
1432
1445
.
33.
Vos
,
H.
,
Guidi
,
F.
,
Boni
,
E.
, and
Tortoli
,
P.
(
2007
). “
Method for microbubble characterization using primary radiation force
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
54
(
7
),
1333
1345
.
34.
White
,
F.
, and
Corfield
,
I.
(
1991
).
Viscous Fluid Flow
(
McGraw-Hill
,
New York
).
35.
Zhao
,
S.
,
Borden
,
M.
,
Bloch
,
S.
,
Kruse
,
D.
,
Ferrara
,
K.
, and
Dayton
,
P.
(
2004
). “
Radiation-force assisted targeting facilitates ultrasonic molecular imaging
,”
Mol. Imag.
3
(
3
),
135
1487
.
You do not currently have access to this content.