This work investigates anomalous transmission effects in periodic dissipative media, which is identified as an acoustic analogue of the Borrmann effect. For this, the scattering of acoustic waves on a set of equidistant resistive sheets is considered. It is shown both theoretically and experimentally that at the Bragg frequency of the system, the transmission coefficient is significantly higher than at other frequencies. The optimal conditions are identified: one needs a large number of sheets, which induce a very narrow peak, and the resistive sheets must be very thin compared to the wavelength, which gives the highest maximal transmission. Using the transfer matrix formalism, it is shown that this effect occurs when the two eigenvalues of the transfer matrix coalesce (i.e., at an exceptional point). Exploiting this algebraic condition, it is possible to obtain similar anomalous transmission peaks in more general periodic media. In particular, the system can be tuned to show a peak at an arbitrary long wavelength.

1.
Acoustic Metamaterials and Phononic Crystals
, edited by
P. A.
Deymeir
(
Springer
,
Berlin
,
2013
), Vol. 173.
2.
J.
Vasseur
,
P. A.
Deymier
,
B.
Chenni
,
B.
Djafari-Rouhani
,
L.
Dobrzynski
, and
D.
Prevost
, “
Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals
,”
Phys. Rev. Lett.
86
(
14
),
3012
3015
(
2001
).
3.
M.
Kafesaki
,
M.
Sigalas
, and
N.
Garcia
, “
Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials
,”
Phys. Rev. Lett.
85
(
19
),
4044
4047
(
2000
).
4.
C.
Kane
and
T.
Lubensky
, “
Topological boundary modes in isostatic lattices
,”
Nature Phys.
10
(
1
),
39
(
2014
).
5.
P.
Kalozoumis
,
G.
Theocharis
,
V.
Achilleos
,
S.
Félix
,
O.
Richoux
, and
V.
Pagneux
, “
Finite-size effects on topological interface states in one-dimensional scattering systems
,”
Phys. Rev. A
98
(
2
),
023838
(
2018
).
6.
I.
Psarobas
, “
Viscoelastic response of sonic band-gap materials
,”
Phys. Rev. B
64
(
1
),
012303
(
2001
).
7.
C.-Y.
Lee
,
M. J.
Leamy
, and
J. H.
Nadler
, “
Frequency band structure and absorption predictions for multi-periodic acoustic composites
,”
J. Sound Vib.
329
(
10
),
1809
1822
(
2010
).
8.
M. I.
Hussein
and
M. J.
Frazier
, “
Metadamping: An emergent phenomenon in dissipative metamaterials
,”
J. Sound Vib.
332
(
20
),
4767
4774
(
2013
).
9.
G.
Borrmann
, “
Über extinktionsdiagramme der röntgenstrahlen von quarz
” (“About extinction diagrams of x-rays from quartz”),
Phys. Z
42
,
157
162
(
1941
).
10.
B. W.
Batterman
and
H.
Cole
, “
Dynamical diffraction of X rays by perfect crystals
,”
Rev. Mod. Phys.
36
(
3
),
681
717
(
1964
).
11.
A.
Vinogradov
,
Y. E.
Lozovik
,
A.
Merzlikin
,
A.
Dorofeenko
,
I.
Vitebskiy
,
A.
Figotin
,
A.
Granovsky
, and
A.
Lisyansky
, “
Inverse Borrmann effect in photonic crystals
,”
Phys. Rev. B
80
(
23
),
235106
(
2009
).
12.
V.
Novikov
and
T.
Murzina
, “
Borrmann effect in photonic crystals
,”
Opt. Lett.
42
(
7
),
1389
1392
(
2017
).
13.
V.
Novikov
and
T.
Murzina
, “
Borrmann effect in Laue diffraction in one-dimensional photonic crystals under a topological phase transition
,”
Phys. Rev. B
99
(
24
),
245403
(
2019
).
14.
A.
Cebrecos
,
R.
Picó
,
V.
Romero-García
,
A.
Yasser
,
L.
Maigyte
,
R.
Herrero
,
M.
Botey
,
V. J.
Sánchez-Morcillo
, and
K.
Staliunas
, “
Enhanced transmission band in periodic media with loss modulation
,”
Appl. Phys. Lett.
105
(
20
),
204104
(
2014
).
15.
U.
Ingard
,
Noise Reduction Analysis
(
Jones & Bartlett Publishers
,
Burlington, MA
,
2009
).
16.
J.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
, 2nd ed. (
John Wiley & Sons
,
Chichester, UK
,
2009
).
17.
P.
Markos
and
C. M.
Soukoulis
,
Wave Propagation: From Electrons to Photonic Crystals and Left-handed Materials
(
Princeton University Press
,
Princeton
,
2008
).
18.

An EP is defined as a point in parameter space such that two eigenvalues as well as the corresponding two eigenvectors of a matrix coalesce (see Ref. 19 for details). Since a single eigenvector exists at the EP, a basis can be obtained by adding a generalized eigenvector. In our case (a 2×2 matrix) it means that such a vector V̂ satisfies (λM)2·V̂=0 but (λM)·V̂0. Notice that because Mc is 2 × 2, any vector not aligned with the eigenvector will satisfy this.

19.
T.
Kato
,
Perturbation Theory for Linear Operators
(
Springer
,
Berlin
,
2013
), Vol. 132, p.
64
.
20.
P.
Testud
,
Y.
Aurégan
,
P.
Moussou
, and
A.
Hirschberg
, “
The whistling potentiality of an orifice in a confined flow using an energetic criterion
,”
J. Sound Vib.
325
(
4–5
),
769
780
(
2009
).
21.
S. W.
Rienstra
and
A.
Hirschberg
, “
An introduction to acoustics
,” Report IWDE,
92
106
(
2001
).
22.
M.
Xiao
,
Z.
Zhang
, and
C. T.
Chan
, “
Surface impedance and bulk band geometric phases in one-dimensional systems
,”
Phys. Rev. X
4
(
2
),
021017
(
2014
).
23.
G.
Ma
,
M.
Xiao
, and
C.
Chan
, “
Topological phases in acoustic and mechanical systems
,”
Nat. Rev. Phys.
1
(
4
),
281
294
(
2019
).
You do not currently have access to this content.