During ultrasonic clamp-on flow metering, Lamb waves propagating in the pipe wall may limit the measurement accuracy by introducing absolute errors in the flow estimates. Upon reception, these waves can interfere with the up and downstream waves refracting from the liquid, and disturb the measurement of the transit time difference that is used to obtain the flow speed. Thus, suppression of the generation of Lamb waves might directly increase the accuracy of a clamp-on flow meter. Existing techniques apply to flow meters with single element transducers. This paper considers the application of transducer arrays and presents a method to achieve a predefined amount of suppression of these spurious Lamb waves based on appropriate amplitude weightings of the transducer elements. Finite element simulations of an ultrasonic clamp-on flow measurement setting will be presented to show the effect of array aperture control on the suppression of the Lamb waves in a 1-mm-thick stainless steel pipe wall. Furthermore, a proof-of-principle experiment will be shown that demonstrates a good agreement with the simulations.

1.
J. C.
Wendoloski
, “
On the theory of acoustic flow measurement
,”
J. Acoust. Soc. Am.
110
(
2
),
724
737
(
2001
).
2.
W.-S.
Cheung
,
H.-S.
Kwon
,
K.-A.
Park
, and
J.-S.
Paik
, “
Acoustic flowmeter for the measurement of the mean flow velocity in pipes
,”
J. Acoust. Soc. Am.
110
(
5
),
2308
2314
(
2001
).
3.
R. C.
Baker
,
Flow Measurement Handbook: Industrial Designs, Operating Principles, Performance, and Applications
(
Cambridge University Press
,
London
,
2005
).
4.
D.
Kurniadi
and
A.
Trisnobudi
, “
A multi-path ultrasonic transit time flow meter using a tomography method for gas flow velocity profile measurement
,”
Part. Part. Syst. Charact.
23
(
3-4
),
330
338
(
2006
).
5.
M.
Sanderson
and
H.
Yeung
, “
Guidelines for the use of ultrasonic non-invasive metering techniques
,”
Flow Meas. Instrum.
13
(
4
),
125
142
(
2002
).
6.
K.
Xu
,
D.
Ta
,
B.
Hu
,
P.
Laugier
, and
W.
Wang
, “
Wideband dispersion reversal of Lamb waves
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
61
(
6
),
997
1005
(
2014
).
7.
C.
Prada
and
M.
Fink
, “
Separation of interfering acoustic scattered signals using the invariants of the time-reversal operator. Application to Lamb waves characterization
,”
J. Acoust. Soc. Am.
104
(
2
),
801
807
(
1998
).
8.
K. G.
Sabra
,
A.
Srivastava
,
F.
Lanza di Scalea
,
I.
Bartoli
,
P.
Rizzo
, and
S.
Conti
, “
Structural health monitoring by extraction of coherent guided waves from diffuse fields
,”
J. Acoust. Soc. Am.
123
(
1
),
EL8
EL13
(
2008
).
9.
K.
Xu
,
D.
Ta
,
P.
Moilanen
, and
W.
Wang
, “
Mode separation of Lamb waves based on dispersion compensation method
,”
J. Acoust. Soc. Am.
131
(
4
),
2714
2722
(
2012
).
10.
G.
Dib
,
O.
Karpenko
,
M.
Haq
,
L.
Udpa
, and
S.
Udpa
, “
Advanced signal processing algorithms in structural integrity monitoring
,”
Procedia Eng.
86
,
427
439
(
2014
).
11.
J.-L.
Le Calvez
and
T. M.
Brill
, “
A method to separate flexural and extensional signals from mixed-mode ultrasonic signals
,” in
Ultrasonics Symposium (IUS), 2016 IEEE International
(
IEEE
,
New York
,
2016
), pp.
1
4
.
12.
L.
Bai
,
K.
Xu
,
N.
Bochud
,
D.
Ta
,
B.
Hu
,
P.
Laugier
, and
J.-G.
Minonzio
, “
Multichannel wideband mode-selective excitation of ultrasonic guided waves in long cortical bone
,” in
2016 IEEE International Ultrasonics Symposium (IUS)
(
IEEE
,
New York
,
2016
), pp.
1
4
.
13.
H.
Li
,
X.
Liu
, and
L.
Bo
, “
A novel method to analysis strong dispersive overlapping Lamb-wave signatures
,”
J. Vibroeng.
19
(
1
),
641
656
(
2017
).
14.
F.
Gao
,
L.
Zeng
,
J.
Lin
, and
Z.
Luo
, “
Mode separation in frequency–wavenumber domain through compressed sensing of far-field Lamb waves
,”
Meas. Sci. Technol.
28
(
7
),
075004
(
2017
).
15.
V.
Serey
,
N.
Quaegebeur
,
P.
Micheau
,
P.
Masson
,
M.
Castaings
, and
M.
Renier
, “
Selective generation of ultrasonic guided waves in a bi-dimensional waveguide
,”
Struct. Health Monit.
18
(
4
),
1324
1336
(
2019
).
16.
W.
Zhu
and
J. L.
Rose
, “
Lamb wave generation and reception with time-delay periodic linear arrays: A BEM simulation and experimental study
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
46
(
3
),
654
664
(
1999
).
17.
J.
Li
and
J. L.
Rose
, “
Implementing guided wave mode control by use of a phased transducer array
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
48
(
3
),
761
768
(
2001
).
18.
J. L.
Rose
,
Ultrasonic Guided Waves in Solid Media
(
Cambridge University Press
,
London
,
2014
).
19.
K.-C. T.
Nguyen
,
L. H.
Le
,
T. N.
Tran
,
M. D.
Sacchi
, and
E. H.
Lou
, “
Excitation of ultrasonic Lamb waves using a phased array system with two array probes: Phantom and in vitro bone studies
,”
Ultrasonics
54
(
5
),
1178
1185
(
2014
).
20.
C.
Adams
,
S.
Harput
,
D.
Cowell
,
T. M.
Carpenter
,
D. M.
Charutz
, and
S.
Freear
, “
An adaptive array excitation scheme for the unidirectional enhancement of guided waves
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
64
(
2
),
441
451
(
2017
).
21.
D.
Guyomar
and
J.
Powers
, “
A Fourier approach to diffraction of pulsed ultrasonic waves in lossless media
,”
J. Acoust. Soc. Am.
82
(
1
),
354
359
(
1987
).
22.
R. J.
Zemp
,
J.
Tavakkoli
, and
R. S.
Cobbold
, “
Modeling of nonlinear ultrasound propagation in tissue from array transducers
,”
J. Acoust. Soc. Am.
113
(
1
),
139
152
(
2003
).
23.
R. S.
Cobbold
,
Foundations of Biomedical Ultrasound
(
Oxford University Press
,
UK
,
2006
).
24.
V.
Pagneux
, “
Revisiting the edge resonance for Lamb waves in a semi-infinite plate
,”
J. Acoust. Soc. Am.
120
(
2
),
649
656
(
2006
).
25.
J. D. N.
Cheeke
,
Fundamentals and Applications of Ultrasonic Waves
(
CRC Press
,
Boca Raton, FL
,
2016
).
26.
I. A.
Viktorov
,
Rayleigh and Lamb Waves: Physical Theory and Applications
(
Plenum
,
New York
,
1967
).
27.
R.
Bunney
,
R.
Goodman
, and
S.
Marshall
, “
Rayleigh and Lamb waves on cylinders
,”
J. Acoust. Soc. Am.
46
(
5B
),
1223
1233
(
1969
).
28.
A.
Velichko
and
P. D.
Wilcox
, “
Excitation and scattering of guided waves: Relationships between solutions for plates and pipes
,”
J. Acoust. Soc. Am.
125
(
6
),
3623
3631
(
2009
).
29.
R. M.
Levine
and
J. E.
Michaels
, “
Model-based imaging of damage with Lamb waves via sparse reconstruction
,”
J. Acoust. Soc. Am.
133
(
3
),
1525
1534
(
2013
).
30.
V.
Dayal
and
V. K.
Kinra
, “
Leaky Lamb waves in an anisotropic plate. I: An exact solution and experiments
,”
J. Acoust. Soc. Am.
85
(
6
),
2268
2276
(
1989
).
31.
K.
Xu
,
D.
Ta
,
D.
Cassereau
,
B.
Hu
,
W.
Wang
,
P.
Laugier
, and
J.-G.
Minonzio
, “
Multichannel processing for dispersion curves extraction of ultrasonic axial-transmission signals: Comparisons and case studies
,”
J. Acoust. Soc. Am.
140
(
3
),
1758
1770
(
2016
).
You do not currently have access to this content.