Better understanding of elastic wave propagation in polycrystals has interest for applications in seismology and nondestructive material characterization. In this study, a second-order wave propagation (SOA) model that considers forward multiple scattering events is developed for macroscopically isotropic polycrystals with equiaxed grains of arbitrary anisotropy (triclinic). It predicts scattering-induced wave attenuation and dispersion of phase velocity. The SOA model implements the generalized two-point correlation (TPC) function, which relates to the actual numeric TPC of simulated microstructure. The analytical Rayleigh and stochastic asymptotes for both attenuation and phase velocity are derived for triclinic symmetry grains, which elucidate the effects of the elastic scattering factors and the generalized TPC in different frequency regimes. Also, the computationally efficient far field approximation attenuation model is obtained for this case; it shows good agreement with the SOA model in all frequency ranges. To assess the analytical models, a three-dimensional (3D) finite element (FE) model for triclinic polycrystals is developed and implemented on simulated 3D triclinic polycrystalline aggregates. Quantitative agreement is observed between the analytical and the FE simulations for both the attenuation and phase velocity. Also, the quasi-static velocities obtained from the SOA and FE models are in excellent agreement with the static self-consistent velocity.

1.
M.
Fink
,
W. A.
Kuperman
,
J.-P.
Montagner
, and
A.
Tourin
,
Topics in Applied Physics. Imaging of Complex Media with Acoustic and Seismic Waves
(
Springer-Verlag
,
Berlin, Germany
,
2002
),Vol.
84
, pp.
1
336
.
2.
H.
Sato
,
M. C.
Fehler
, and
T.
Maeda
,
Seismic Wave Propagation and Scattering in the Heterogeneous Earth
, 2nd ed. (
Spring Verlag
,
Berlin
,
2012
).
3.
R. B.
Thompson
and
F. J.
Margetan
, “
Use of elastodynamic theories in the stochastic description of the effects of microstructure on ultrasonic flaw and noise signals
,”
Wave Motion
36
,
347
365
(
2002
).
4.
F. E.
Stanke
and
G. S.
Kino
, “
A unified theory for elastic wave propagation in polycrystalline materials
,”
J. Acoust. Soc. Am.
75
(
3
),
665
681
(
1984
).
5.
R. L.
Weaver
, “
Diffusivity of ultrasound in polycrystals
,”
J. Mech. Phys. Solids
38
(
1
),
55
86
(
1990
).
6.
S.
Hirsekorn
, “
The scattering of ultrasonic waves by polycrystals
,”
J. Acoust. Soc. Am.
72
(
3
),
1021
1031
(
1982
).
7.
J. A.
Turner
, “
Elastic wave propagation and scattering in heterogeneous, anisotropic media: Textured polycrystalline materials
,”
J. Acoust. Soc. Am.
106
(
2
),
541
552
(
1999
).
8.
J.
Li
and
S. I.
Rokhlin
, “
Propagation and scattering of ultrasonic waves in polycrystals with arbitrary crystallite and macroscopic texture symmetries
,”
Wave Motion
58
,
145
164
(
2015
).
9.
A. L.
Pilchak
,
J.
Li
, and
S. I.
Rokhlin
, “
Quantitative comparison of microtexture in near-alpha titanium measured by ultrasonic scattering and electron backscatter diffraction
,”
Metall. Mater. Trans. A
45
(
10
),
4679
4697
(
2014
).
10.
A. P.
Arguelles
,
C. M.
Kube
,
P.
Hu
, and
J. A.
Turner
, “
Mode-converted ultrasonic scattering in polycrystals with elongated grains
,”
J. Acoust. Soc. Am.
140
(
3
),
1570
1580
(
2016
).
11.
C. M.
Kube
and
J. A.
Turner
, “
Acoustic attenuation coefficients for polycrystalline materials containing crystallites of any symmetry class
,”
J. Acoust. Soc. Am.
137
(
6
),
EL476
EL482
(
2015
).
12.
J.
Li
and
S. I.
Rokhlin
, “
Elastic wave scattering in random anisotropic solids
,”
Int. J. Solids Struct.
78–79
,
110
124
(
2016
).
13.
S. I.
Rokhlin
,
J.
Li
, and
G.
Sha
, “
Far-field scattering model for wave propagation in random media
,”
J. Acoust. Soc. Am.
137
(
5
),
2655
2669
(
2015
).
14.
S.
Ahmed
and
R. B.
Thompson
, “
Attenuation of ultrasonic waves in cubic metals having elongated, oriented grains
,”
Nondestruct. Test. Eval.
8–9
,
525
531
(
1992
).
15.
M.
Calvet
and
L.
Margerin
, “
Impact of grain shape on seismic attenuation and phase velocity in cubic polycrystalline materials
,”
Wave Motion
65
,
29
43
(
2016
).
16.
S.
Hirsekorn
, “
The scattering of ultrasonic waves in polycrystalline materials with texture
,”
J. Acoust. Soc. Am.
77
(
3
),
832
843
(
1985
).
17.
C. M.
Kube
and
J. A.
Turner
, “
Stress-dependent ultrasonic scattering in polycrystalline materials
,”
J. Acoust. Soc. Am.
139
(
2
),
811
824
(
2016
).
18.
J.-Y.
Kim
and
S. I.
Rokhlin
, “
Determination of elastic constants of generally anisotropic inclined lamellar structure using line-focus acoustic microscopy
,”
J. Acoust. Soc. Am.
126
(
6
),
2998
3007
(
2009
).
19.
M.
Calvet
and
L.
Margerin
, “
Velocity and attenuation of scalar and elastic waves in random media: A spectral function approach
,”
J. Acoust. Soc. Am.
131
(
3
),
1843
1862
(
2012
).
20.
L.
Yang
,
O. I.
Lobkis
, and
S. I.
Rokhlin
, “
An integrated model for ultrasonic wave propagation and scattering in a polycrystalline medium with elongated hexagonal grains
,”
Wave Motion
49
(
5
),
544
560
(
2012
).
21.
A.
Van Pamel
,
G.
Sha
,
S. I.
Rokhlin
, and
M. J. S.
Lowe
, “
Finite-element modelling of elastic wave propagation and scattering within heterogeneous media
,”
Proc. R. Soc. A
473
(
20
),
160738
(
2017
).
22.
M.
Ryzy
,
T.
Grabec
,
P.
Sedlak
, and
I. A.
Veres
, “
Influence of grain morphology on ultrasonic wave attenuation in polycrystalline media with statistically equiaxed grains
,”
J. Acoust. Soc. Am.
143
(
1
),
219
229
(
2018
).
23.
A.
Van Pamel
,
G.
Sha
,
M. J. S.
Lowe
, and
S. I.
Rokhlin
, “
Numerical and analytic modelling of elastodynamic scattering within polycrystalline materials
,”
J. Acoust. Soc. Am.
143
(
4
),
2394
2408
(
2018
).
24.
P. E.
Lhuiller
,
B.
Chassignole
,
M.
Oudaa
,
S. O.
Kerherve
,
F.
Rupin
, and
T. F.
Fouquet
, “
Investigation of the ultrasonic attenuation in anisotropic weld materials with finite element modeling and grain-scale material description
,”
Ultrasonics
78
,
40
50
(
2017
).
25.
A.
Van Pamel
,
C. R.
Brett
,
P.
Huthwaite
, and
M. J. S.
Lowe
, “
Finite element modelling of elastic wave scattering within a polycrystalline material in two and three dimensions
,”
J. Acoust. Soc. Am.
138
(
4
),
2326
2336
(
2015
).
26.
Y.
Liu
,
A.
Van Pamel
,
P. B.
Nagy
, and
P.
Cawley
, “
Investigation of ultrasonic backscatter using three-dimensional finite element simulations
,”
J. Acoust. Soc. Am.
145
(
3
),
1584
1595
(
2019
).
27.
R.
Quey
,
P. R.
Dawson
, and
F.
Barbe
, “
Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing
,”
Comput. Methods Appl. Mech. Eng.
200
(
17–20
),
1729
1745
(
2011
).
28.
R. B.
Thompson
, “
Elastic-wave propagation in random polycrystals: Fundamentals and application to nondestructive evaluation
,” in
Topics in Applied Physics. Imaging of Complex Media with Acoustic and Seismic Waves
, edited by
M.
Fink
,
W. A.
Kuperman
,
J.-P.
Montagner
, and
A.
Tourin
(
Springer-Verlag
,
Berlin, Germany
,
2002
), Vol.
84
, pp.
233
257
.
29.
L.
Yang
,
O. I.
Lobkis
, and
S. I.
Rokhlin
, “
Shape effect of elongated grains on ultrasonic attenuation in polycrystalline materials
,”
Ultrasonics
51
(
6
),
697
708
(
2011
).
30.
C. S.
Man
,
R.
Paroni
,
Y.
Xiang
, and
E. A.
Kenik
, “
On the geometric autocorrelation function of polycrystalline materials
,”
J. Comput. Appl. Math.
190
(
1–2
),
200
210
(
2006
).
31.
G.
Sha
, “
Analytical attenuation and scattering models for polycrystals with uniform equiaxed grains
,”
J. Acoust. Soc. Am.
143
(
5
),
EL347
EL353
(
2018
).
32.
F. E.
Stanke
, “
Spatial autocorrelation functions for calculations of effective propagation constants in polycrystalline materials
,”
J. Acoust. Soc. Am.
80
(
5
),
1479
1485
(
1986
).
33.
K.
Sobczyk
and
D. J.
Kirkner
, “
Material media microstructure: Modeling issues
,” in
Stochastic Modeling of Microstructures
(
Birkhäuser Boston
,
Boston, MA
,
2001
), pp.
149
202
.
34.
A.
Van Pamel
,
P. B.
Nagy
, and
M. J. S.
Lowe
, “
On the dimensionality of elastic wave scattering within heterogeneous media
,”
J. Acoust. Soc. Am.
140
(
6
),
4360
4366
(
2016
).
35.
P.
Huthwaite
, “
Accelerated finite element elastodynamic simulations using the GPU
,”
J. Comput. Phys.
257
,
687
707
(
2014
).
36.
ASTM E112-12
:
Standard Test Methods for Determining Average Grain Size
(
ASTM International
,
West Conshohocken, PA
,
2012
).
37.
C. M.
Kube
and
A. P.
Arguelles
, “
Bounds and self-consistent estimates of the elastic constants of polycrystals
,”
Comput. Geosci.
95
,
118
122
(
2016
).
38.
J. M.
Brown
, “
Determination of Hashin-Shtrikman bounds on the isotropic effective elastic moduli of polycrystals of any symmetry
,”
Comput. Geosci.
80
,
95
99
(
2015
).
39.
R.
Hill
, “
The elastic behaviour of a crystalline aggregate
,”
Proc. Phys. Soc. Sect. A
65
(
5
),
349
354
(
1952
).
40.
M.
Lobos
and
T.
Böhlke
, “
Materials design for the anisotropic linear elastic properties of textured cubic crystal aggregates using zeroth-, first- and second-order bounds
,”
Int. J. Mech. Mater. Des.
11
(
1
),
59
78
(
2015
).
41.
M. R.
Murshed
and
S. I.
Ranganathan
, “
Scaling laws in elastic polycrystals with individual grains belonging to any crystal class
,”
Acta Mech.
228
(
4
),
1525
1539
(
2017
).
42.
S. I.
Ranganathan
and
M.
Ostoja-Starzewski
, “
Universal elastic anisotropy index
,”
Phys. Rev. Lett.
101
(
5
),
055504
(
2008
).
43.
C. M.
Kube
, “
Elastic anisotropy of crystals
,”
AIP Adv.
6
,
095209
(
2016
).
44.
G.
Sha
and
S. I.
Rokhlin
, “
Universal scaling of transverse wave attenuation in polycrystals
,”
Ultrasonics
88
,
84
96
(
2018
).
45.
C. M.
Kube
, “
Erratum: Acoustic attenuation coefficients for polycrystalline materials containing crystallites of any symmetry class [J. Acoust. Soc. Am. 137, EL476–EL482 (2015)]
,”
J. Acoust. Soc. Am.
138
,
976
(
2015
).
46.
O. I.
Lobkis
,
L.
Yang
,
J.
Li
, and
S. I.
Rokhlin
, “
Ultrasonic backscattering in polycrystals with elongated single phase and duplex microstructures
,”
Ultrasonics
52
(
6
),
694
705
(
2012
).
47.
C.
Geuzaine
and
J.-F.
Remacle
, “
Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities
,”
Int. J. Numer. Methods Eng.
79
(
11
),
1309
1331
(
2009
).
You do not currently have access to this content.