Impact pile driving creates intense, impulsive sound that radiates into the surrounding environment. Piles driven vertically into the seabed generate an azimuthally symmetric underwater sound field whereas piles driven on an angle will generate an azimuthally dependent sound field. Measurements were made during pile driving of raked piles to secure jacket foundation structures to the seabed in waters off the northeastern coast of the U.S. at ranges between 500 m and 15 km. These measurements were analyzed to investigate variations in rise time, decay time, pulse duration, kurtosis, and sound received levels as a function of range and azimuth. Variations in the radiated sound field along opposing azimuths resulted in differences in measured sound exposure levels of up to 10 dB and greater due to the pile rake as the sound propagated in range. The raked pile configuration was modeled using an equivalent axisymmetric FEM model to describe the azimuthally dependent measured sound fields. Comparable sound level differences in the model results confirmed that the azimuthal discrepancy observed in the measured data was due to the inclination of the pile being driven relative to the receiver.

1.
Bailey
,
H.
,
Senior
,
B.
,
Simmons
,
D.
,
Rusin
,
J.
,
Picken
,
G.
, and
Thompson
,
P. M.
(
2010
). “
Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals
,”
Mar. Pollut. Bull.
60
(
6
),
888
897
.
2.
Dahl
,
P. H.
, and
Dall'Osto
,
D. R.
(
2017
). “
On the underwater sound field from impact pile driving: Arrival structure, precursor arrivals, and energy streamlines
,”
J. Acoust. Soc. Am.
142
(
2
),
1141
1155
.
3.
Dahl
,
P. H.
, and
Reinhall
,
P. G.
(
2013
). “
Beam forming of the underwater sound field from impact pile driving
,”
J. Acoust. Soc. Am.
134
(
1
),
EL1
EL6
.
4.
De Jong
,
C.
, and
Ainslie
,
M. A.
(
2008
). “
Underwater radiated noise due to the piling for the Q7 Offshore Wind Park
,”
J. Acoust. Soc. Am.
123
(
5
),
2987
.
5.
Erdreich
,
J.
(
1986
). “
A distribution based definition of impulse noise
,”
J. Acoust. Soc. Am.
79
(
4
),
990
998
.
6.
Göttsche
,
K. M.
,
Steinhagen
,
U.
, and
Juhl
,
P. M.
(
2015
). “
Numerical evaluation of pile vibration and noise emission during offshore pile driving
,”
Appl. Acoust.
99
,
51
59
.
7.
Hamernik
,
R. P.
,
Qiu
,
W.
, and
Davis
,
B.
(
2003
). “
The effects of the amplitude distribution of equal energy exposures on noise-induced hearing loss: The kurtosis metric
,”
J. Acoust. Soc. Am.
114
(
1
),
386
395
.
8.
Hastie
,
G.
,
Merchant
,
N. D.
,
Götz
,
T.
,
Russell
,
D. J. F.
,
Thompson
,
P.
, and
Janik
,
V. M.
(
2019
). “
Effects of impulsive noise on marine mammals: Investigating range dependent risk
,”
Ecol. Appl.
29
(
5
),
e01906
.
9.
HDR
(
2018
). “
Field observations during wind turbine foundation installation at the Block Island Wind Farm, Rhode Island. Appendix D: Underwater Sound Monitoring Reports
,” BOEM 2018-029 (U.S. Department of the Interior, Washington, DC).
10.
Henderson
,
D.
, and
Hamernik
,
R. P.
(
1986
). “
Impulse noise: Critical review
,”
J. Acoust. Soc. Am.
80
(
2
),
569
584
.
11.
ISO 10843 Acoustics
(
1997
). “
Methods for the description and physical measurement of single impulses or series of impulses
” (International Organization for Standardization, Geneva, Switzerland).
12.
ISO 18405 Underwater Acoustics
(
2017a
). “
Terminology
” (International Organization for Standardization, Geneva, Switzerland).
13.
ISO 18406
(
2017b
). “
Underwater acoustics measurement of radiated underwater sound from percussive pile driving
” (International Organization for Standardization, Geneva, Switzerland).
14.
Jensen
,
F. B.
,
Kuperman
,
W. A.
,
Porter
,
M. B.
, and
Schmidt
,
H.
(
2011
).
Computational Ocean Acoustics
, 2nd ed. (
Springer Science
,
New York
), pp.
233
529
.
15.
Kastelein
,
R. A.
,
Helder-Hoek
,
L.
,
Van de Voorde
,
S.
,
von Benda-Beckmann
,
A. M.
,
Lam
,
F.-P. A.
,
Jansen
,
E.
,
de Jong
,
C. A. F.
, and
Ainslie
,
M. A.
(
2017
). “
Temporary hearing threshold shift in a harbor porpoise (Phocoena phocoena) after exposure to multiple airgun sounds
,”
J. Acoust. Soc. Am.
142
(
4
),
2430
2442
.
16.
Kim
,
H.
,
Miller
,
J. H.
, and
Potty
,
G. R.
(
2013
). “
Predicting underwater radiated noise levels due to the first offshore wind turbine installation in the U.S.
,”
J. Acoust. Soc. Am.
19
,
040067
.
17.
Laughlin
,
J.
(
2005
). “
Underwater sound levels associated with pile driving on the Sr 24, I-82 to keys road project Yakima River
” (Washington State Department of Transportation, Seattle).
18.
Lei
,
S.
,
Ahroon
,
W. A.
, and
Hamernik
,
R. P.
(
1994
). “
The application of frequency and time domain kurtosis to the assessment of hazardous noise exposures
,”
J. Acoust. Soc. Am.
95
(
5
),
3005
.
19.
Lin
,
Y.-T.
,
Newhall
,
A. E.
,
Miller
,
J. H.
,
Potty
,
G. R.
, and
Vigness-Raposa
,
K. J.
(
2019
). “
A three-dimensional underwater sound propagation model for offshore wind farm noise prediction
,”
J. Acoust. Soc. Am.
145
(
5
),
EL335
EL340
.
20.
MacGillivray
,
A.
(
2018
). “
Underwater noise from pile driving of conductor casing at a deep-water oil platform
,”
J. Acoust. Soc. Am.
143
(
1
),
450
459
.
21.
Martin
,
S. B.
(
2019
). “
One minute at a time: Advancing our ability to estimate effects of man-made sound on marine life
,” Ph.D. thesis,
Dalhousie University Halifax
,
Nova Scotia
.
22.
Martin
,
S. B.
, and
Barclay
,
D. R.
(
2019
). “
Determining the dependence of marine pile driving sound levels on strike energy, pile penetration, and propagation effects using a linear mixed model based on damped cylindrical spreading
,”
J. Acoust. Soc. Am.
146
,
109
121
.
23.
National Marine Fisheries Service
(
2018
). “
2018 revision to technical guidance for assessing the effects of anthropogenic sound on marine mammal hearing (version 2.0): Underwater thresholds for onset of permanent and temporary threshold shifts
,” NOAA Technical Memorandum NMFS-OPR-59.
24.
National Marine Fisheries Service
(
2015
). “
DRAFT guidance for assessing the effects of anthropogenic sound on marine mammal hearing
,” Document No. 2016-05886. (Federal Registrar, Washington, DC).
25.
Norro
,
A. M. J.
,
Rumes
,
B.
, and
Degraer
,
S. J.
(
2013
). “
Differentiating between underwater construction noise of monopile and jacket foundations for offshore windmills: A case study from the Belgian Part of the North Sea
,”
Sci. World J.
2013
,
897624
.
26.
Popper
,
A. N.
,
Carlson
,
T. J.
,
Hawkins
,
A. D.
,
Southall
,
B. L.
, and
Gentry
,
R. L.
(
2006
). “
Interim criteria for injury of fish exposed to pile driving operations: A white paper
,” 1–15, available at https://www.nrc.gov/docs/ML0932/ML093210627.pdf.
27.
Popper
,
A. N.
,
Hawkins
,
A. D.
,
Fay
,
R. R.
,
Mann
,
D. A.
,
Bartol
,
S.
,
Carlson
,
T. J.
,
Coombs
,
S.
,
Ellison
,
W. T.
,
Gentry
,
R. L.
,
Halvorsen
,
M. B.
,
Løkkeborg
,
S.
,
Rogers
,
P. H.
,
Southall
,
B. L.
,
Zeddies
,
D. G.
, and
Tavolga
,
W. N.
(
2014
).
Sound Exposure Guidelines for Fishes and Sea Turtles: A Technical Report Prepared by ANSI-Accredited Standards Committee S3/SC1 and Registered with ANSI. ASA S3/SC1.4 TR-2014
(
Springer International Publishing
,
Cham, Switzerland
).
28.
Potty
,
G. R.
,
Miller
,
J. H.
, and
Lynch
,
J. F.
(
2003
). “
Inversion for sediment geoacoustic properties at the New England Bight
,”
J. Acoust. Soc. Am.
114
(
4
),
1874
1887
.
29.
Potty
,
G. R.
,
Miller
,
J. H.
,
Lynch
,
J. F.
, and
Smith
,
K. B.
(
2000
). “
Tomographic inversion for sediment parameters in shallow water
,”
J. Acoust. Soc. Am.
108
(
3
),
973
986
.
30.
Reinhall
,
P. G.
, and
Dahl
,
P. H.
(
2011
). “
Underwater Mach wave radiation from impact pile driving: Theory and observation
,”
J. Acoust. Soc. Am.
130
(
3
),
1209
1216
.
31.
Robinson
,
S. P.
,
Theobald
,
P. D.
, and
Lepper
,
P. A.
(
2012
). “
Underwater noise generated from marine piling
,”
J. Acoust. Soc. Am.
17
,
070080
.
32.
Southall
,
B. L.
,
Bowles
,
A. E.
,
Ellison
,
W. T.
,
Finneran
,
J. J.
,
Gentry
,
R. L.
,
Greene
,
C. R.
, Jr.
,
Kastak
,
D.
,
Ketten
,
D. R.
,
Miller
,
J. H.
,
Nachtigall
,
P. E.
,
Richardson
,
W. J.
,
Tomas
,
J. A.
, and
Tyack
,
P. L.
(
2007
). “
Marine mammal noise exposure criteria: Initial scientific recommendations
,”
Aquat. Mamm.
33
(
4
).
1
121
.
33.
Southall
,
B. L.
,
Finneran
,
J. J.
,
Reichmuth
,
C.
,
Nachtigall
,
P. E.
,
Ketten
,
D. R.
,
Bowles
,
A. E.
,
Ellison
,
W. T.
,
Nowacek
,
D. P.
, and
Tyack
,
P. L.
(
2019
). “
Marine mammal noise exposure criteria: Updated scientific recommendations for residual hearing effects
,”
Aquat. Mamm.
45
(
2
),
125
232
.
34.
Tetra Tech
(
2012
). “
Block Island Wind Farm and Block Island transmission system environmental report: Construction and operations plan
” (Deepwater Wind, Providence, RI).
35.
Tetra Tech
, and
JASCO
(
2015
). “
Hydroacoustic monitoring program final technical report Block Island wind farm construction 2015
,” (Deepwater Wind, Providence, RI).
36.
Westwood
,
E. K.
,
Tindle
,
C. T.
, and
Chapman
,
N. R.
(
1996
). “
A normal mode model for acousto-elastic ocean environments
,”
J. Acoust. Soc. Am.
100
(
6
),
3631
3645
.
37.
Wilkes
,
D. R.
, and
Gavrilov
,
A. N.
(
2017
). “
Sound radiation from impact-driven raked piles
,”
J. Acoust. Soc. Am.
142
(
1
),
1
11
.
38.
Zampolli
,
M.
,
Nijhof
,
M. J. J.
,
de Jong
,
C. A. F.
,
Ainslie
,
M. A.
,
Jansen
,
E. H. W.
, and
Quesson
,
B. A. J.
(
2013
). “
Validation of finite element computations for the quantitative prediction of underwater noise from impact pile driving
,”
J. Acoust. Soc. Am.
133
(
1
),
72
81
.
You do not currently have access to this content.