The generalized cross-correlation (GCC) based inverse model is a promising time domain localization technique for a broadband acoustic source. Its performance is affected by the temporal width threshold of the propagation model matrix. The appropriate threshold should vary with focus distance, array geometry, and array size, but there is still a lack of uniform and effective methods to determine it. To solve this issue and perfect the technique, a method is proposed based on the cumulative probability of all differences of time delay estimation between the focus point and the microphone pair. Further, an alternative propagation model matrix is derived, which circumvents the threshold. Both proposed methods are effective under different simulation and experimental configurations, with strong stability and adaptability to focus distance, array geometry, and array size. The GCC based inverse model with either proposed method not only enjoys satisfactory source localization performance, including narrow mainlobes, few spurious sources, and highlighted source positions, but also can correctly estimate the sound level, which is comparable to that with the preset appropriate temporal width threshold. In terms of the computational time, the inverse model with the latter proposed method outperforms that with the former one.

1.
U.
Michel
, “
History of acoustic beamforming
,” in
First Berlin Beamforming Conference—1st BeBeC
, Berlin, Germany (Nov. 21–22,
2006
).
2.
P.
Chiariotti
,
M.
Martarelli
, and
P.
Castellini
, “
Acoustic beamforming for noise source localization—Reviews, methodology and applications
,”
Mech. Syst. Signal Process.
120
,
422
448
(
2019
).
3.
R.
Merino-Martínez
,
P.
Sijtsma
,
M.
Snellen
,
T.
Ahlefeldt
,
J.
Antoni
,
C. J.
Bahr
,
D.
Blacodon
,
D.
Ernst
,
A.
Finez
,
S.
Funke
,
T. F.
Geyer
,
S.
Haxter
,
G.
Herold
,
X.
Huang
,
W. M.
Humphreys
,
Q.
Leclère
,
A.
Malgoezar
,
U.
Michel
,
T.
Padois
,
A.
Pereira
,
C.
Picard
,
E.
Sarradj
,
H.
Siller
,
D. G.
Simons
, and
C.
Spehr
, “
A review of acoustic imaging methods using phased microphone arrays
,”
CEAS Aeronaut. J.
10
,
197
230
(
2019
).
4.
R.
Merino-Martínez
,
M.
Snellen
, and
D. G.
Simons
, “
Functional beamforming applied to imaging of flyover noise on landing aircraft
,”
J. Aircr.
53
(
6
),
1830
1843
(
2016
).
5.
H. M.
Noh
, “
Noise-source identification of a high-speed train by noise source level analysis
,”
Proc. Inst. Mech. Eng., Part F-J
231
(
6
),
717
728
(
2017
).
6.
R. C.
Ramachandran
,
G.
Raman
, and
R. P.
Dougherty
, “
Wind turbine noise measurement using a compact microphone array with advanced deconvolution algorithms
,”
J. Sound Vib.
333
(
14
),
3058
3080
(
2014
).
7.
F.
Ottermo
,
E.
Möllerström
,
A.
Nordborg
,
J.
Hylander
, and
H.
Bernhoff
, “
Location of aerodynamic noise sources from a 200 kW vertical-axis wind turbine
,”
J. Sound Vib.
400
,
154
166
(
2017
).
8.
J.
Fischer
,
V.
Valeau
, and
L. E.
Brizzi
, “
Beamforming of aeroacoustic sources in the time domain: An investigation of the intermittency of the noise radiated by a forward-facing step
,”
J. Sound Vib.
383
,
464
485
(
2016
).
9.
R. P.
Dougherty
and
R. W.
Stoker
, “
Sidelobe suppression for phased array aeroacoustic measurements
,” in
4th AIAA/CEAS Aeroacoustics Conference
, Toulouse, France (June 2–4,
1998
).
10.
T. F.
Brooks
and
W. M.
Humphreys
, “
A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays
,”
J. Sound Vib.
294
(
4-5
),
856
879
(
2006
).
11.
K.
Ehrenfried
and
L.
Koop
, “
Comparison of iterative deconvolution algorithms for the mapping of acoustic sources
,”
AIAA J.
45
(
7
),
1584
1595
(
2007
).
12.
E.
Tiana-Roig
and
F.
Jacobsen
, “
Deconvolution for the localization of sound sources using a circular microphone array
,”
J. Acoust. Soc. Am.
134
(
3
),
2078
2089
(
2013
).
13.
R. P.
Dougherty
, “
Extensions of DAMAS and benefits and limitations of deconvolution in beamforming
,” in
11th AIAA/CEAS Aeroacoustics Conference
, Monterey, CA (March 23–25,
2005
).
14.
O.
Lylloff
,
E.
Fernandez-Grande
,
F.
Agerkvist
,
J.
Hald
,
E. T.
Roig
, and
M. S.
Andersen
, “
Improving the efficiency of deconvolution algorithms for sound source localization
,”
J. Acoust. Soc. Am.
138
(
1
),
172
180
(
2015
).
15.
P.
Sijtsma
, “
Clean based on spatial source coherence
,”
Int. J. Aeroacoust.
6
(
4
),
357
374
(
2007
).
16.
T.
Yardibi
,
J.
Li
,
P.
Stoica
, and
L. N.
Cattafesta
, “
Sparsity constrained deconvolution approaches for acoustic source mapping
,”
J. Acoust. Soc. Am.
123
(
5
),
2631
2642
(
2008
).
17.
T.
Padois
and
A.
Berry
, “
Two and three-dimensional sound source localization with beamforming and several deconvolution techniques
,”
Acta Acust. Acust.
103
(
3
),
392
400
(
2017
).
18.
Q.
Leclère
,
A.
Pereira
,
C.
Bailly
,
J.
Antoni
, and
C.
Picard
, “
A unified formalism for acoustic imaging based on microphone array measurements
,”
Int. J. Aeroacoust.
16
(
4-5
),
431
456
(
2017
).
19.
Z.
Chu
and
Y.
Yang
, “
Comparison of deconvolution methods for the visualization of acoustic sources based on cross-spectral imaging function beamforming
,”
Mech. Syst. Signal Process.
48
(
1-2
),
404
422
(
2014
).
20.
C. H.
Knapp
and
G. C.
Carter
, “
The generalized correlation method for estimation of time delay
,”
IEEE Trans. Acoust. Speech Signal Process.
24
(
4
),
320
327
(
1976
).
21.
T.
Padois
,
O.
Doutres
, and
F.
Sgard
, “
On the use of modified phase transform weighting functions for acoustic imaging with the generalized cross correlation
,”
J. Acoust. Soc. Am.
145
(
3
),
1546
1555
(
2019
).
22.
N.
Quaegebeur
,
T.
Padois
,
P. A.
Gauthier
, and
P.
Masson
, “
Enhancement of time-domain acoustic imaging based on generalized cross-correlation and spatial weighting
,”
Mech. Syst. Signal Process.
75
,
515
524
(
2016
).
23.
T.
Padois
,
F.
Sgard
,
O.
Doutres
, and
A.
Berry
, “
Acoustic source localization using a polyhedral microphone array and an improved generalized cross-correlation technique
,”
J. Sound Vib.
386
(
6
),
82
99
(
2017
).
24.
T.
Padois
,
O.
Doutres
,
F.
Sgard
, and
A.
Berry
, “
On the use of geometric and harmonic means with the generalized cross-correlation in the time domain to improve noise source maps
,”
J. Acoust. Soc. Am.
140
(
1
),
EL56
EL61
(
2016
).
25.
T.
Padois
, “
Acoustic source localization based on the generalized cross-correlation and the generalized mean with few microphones
,”
J. Acoust. Soc. Am.
143
(
5
),
EL393
EL398
(
2018
).
26.
C.
Noël
,
V.
Planeau
, and
D.
Habault
, “
A new temporal method for the identification of source directions in a reverberant hall
,”
J. Sound Vib.
296
(
3
),
518
538
(
2006
).
27.
T.
Padois
,
O.
Doutres
,
F.
Sgard
, and
A.
Berry
, “
Time domain localization technique with sparsity constraint for imaging acoustic sources
,”
Mech. Syst. Signal Process.
94
,
85
93
(
2017
).
28.
J.
Velasco
,
D.
Pizarro
, and
J.
Macias-Guarasa
, “
Source localization with acoustic sensor arrays using generative model based fitting with sparse constraints
,”
Sensors
12
(
10
),
13781
13812
(
2012
).
29.
Z.
Zhang
,
Y.
Xu
,
J.
Yang
,
X. L.
Li
, and
D.
Zhang
, “
A survey of sparse representation: Algorithms and applications
,”
IEEE Access
3
,
490
530
(
2015
).
30.
T.
Padois
and
A.
Berry
, “
Orthogonal matching pursuit applied to the deconvolution approach for the mapping of acoustic sources inverse problem
,”
J. Acoust. Soc. Am.
138
(
6
),
3678
3685
(
2015
).
31.
S. J.
Kim
,
K.
Koh
,
M.
Lustig
,
S.
Boyd
, and
D.
Gorinevsky
, “
An interior-point method for large-scale ℓ1-regularized least squares
,”
IEEE J. Sel. Top. Signal Process.
1
(
4
),
606
617
(
2007
).
You do not currently have access to this content.