This study investigated whether speech intelligibility in cochlear implant (CI) users is affected by semantic context. Three groups participated in two experiments: Two groups of listeners with normal hearing (NH) listened to either full spectrum speech or vocoded speech, and one CI group listened to full spectrum speech. Experiment 1 measured participants' sentence recognition as a function of target-to-masker ratio (four-talker babble masker), and experiment 2 measured perception of interrupted speech as a function of duty cycles (long/short uninterrupted speech). Listeners were presented with both semantic congruent/incongruent targets. Results from the two experiments suggested that NH listeners benefitted more from the semantic cues as the listening conditions became more challenging (lower signal-to-noise ratios and interrupted speech with longer silent intervals). However, the CI group received minimal benefit from context, and therefore performed poorly in such conditions. On the contrary, in the conditions that were less challenging, CI users benefitted greatly from the semantic context, and NH listeners did not rely on such cues. The results also confirmed that such differential use of semantic cues appears to originate from the spectro-temporal degradations experienced by CI users, which could be a contributing factor for their poor performance in suboptimal environments.

1.
Arenberg Bierer
,
J.
(
2010
). “
Probing the electrode-neuron interface with focused cochlear implant stimulation
,”
Trends Amplif.
14
,
84
95
.
2.
Balkany
,
T.
,
Hodges
,
A.
,
Telischi
,
F.
,
Hoffman
,
R.
,
Madell
,
J.
,
Parisier
,
S.
,
Gantz
,
B.
,
Tyler
,
R.
,
Peters
,
R.
, and
Litovsky
,
R.
(
2008
). “
William House Cochlear Implant Study Group: Position statement on bilateral cochlear implantation
,”
Otol. Neurotol.
29
,
107
.
3.
Başkent
,
D.
, and
Chatterjee
,
M.
(
2010
). “
Recognition of temporally interrupted and spectrally degraded sentences with additional unprocessed low-frequency speech
,”
Hear. Res.
270
,
127
133
.
4.
Başkent
,
D.
, and
Shannon
,
R. V.
(
2004
). “
Frequency-place compression and expansion in cochlear implant listeners
,”
J. Acoust. Soc. Am.
116
,
3130
3140
.
5.
Başkent
,
D.
, and
Shannon
,
R. V.
(
2006
). “
Frequency transposition around dead regions simulated with a noiseband vocoder
,”
J. Acoust. Soc. Am.
119
,
1156
1163
.
6.
Bhargava
,
P.
, and
Başkent
,
D.
(
2012
). “
Effects of low-pass filtering on intelligibility of periodically interrupted speech
,”
J. Acoust. Soc. Am.
131
,
EL87
EL92
.
7.
Bhargava
,
P.
,
Gaudrain
,
E.
, and
Başkent
,
D.
(
2016
). “
The intelligibility of interrupted speech: Cochlear implant users and normal hearing listeners
,”
J. Assoc. Res. Otolaryngol.
17
,
475
491
.
8.
Bierer
,
J. A.
, and
Litvak
,
L.
(
2016
). “
Reducing channel interaction through cochlear implant programming may improve speech perception: Current focusing and channel deactivation
,”
Trends Hear.
20
,
2331216516653389
.
9.
Bilger
,
R. C.
,
Nuetzel
,
J.
,
Rabinowitz
,
W. M.
, and
Rzeczkowski
,
C.
(
1984
). “
Standardization of a test of speech perception in noise
,”
J. Speech Lang. Hear. Res.
27
,
32
48
.
10.
Boothroyd
,
A.
, and
Nittrouer
,
S.
(
1988
). “
Mathematical treatment of context effects in phoneme and word recognition
,”
J. Acoust. Soc. Am.
84
,
101
114
.
11.
Bronkhorst
,
A. W.
,
Bosman
,
A. J.
, and
Smoorenburg
,
G. F.
(
1993
). “
A model for context effects in speech recognition
,”
J. Acoust. Soc. Am.
93
,
499
509
.
12.
Burkholder-Juhasz
,
R. A.
,
Levi
,
S. V.
,
Dillon
,
C. M.
, and
Pisoni
,
D. B.
(
2007
). “
Nonword repetition with spectrally reduced speech: Some developmental and clinical findings from pediatric cochlear implantation
,”
J. Deaf Stud. Deaf Educ.
12
,
472
485
.
13.
Chatterjee
,
M.
,
Peredo
,
F.
,
Nelson
,
D.
, and
Başkent
,
D.
(
2010
). “
Recognition of interrupted sentences under conditions of spectral degradation
,”
J. Acoust. Soc. Am.
127
,
EL37
EL41
.
14.
Ching
,
T.
,
Van Wanrooy
,
E.
, and
Dillon
,
H.
(
2007
). “
Binaural-bimodal fitting or bilateral implantation for managing severe to profound deafness: A review
,”
Trends Amplif.
11
,
161
192
.
15.
Dingemanse
,
J. G.
, and
Goedegebure
,
A.
(
2019
). “
The important role of contextual information in speech perception in cochlear implant users and its consequences in speech tests
,”
Trends Hear.
23
,
2331216519838672
.
16.
Donaldson
,
G. S.
,
Kreft
,
H. A.
, and
Litvak
,
L.
(
2005
). “
Place-pitch discrimination of single-versus dual-electrode stimuli by cochlear implant users
,”
J. Acoust. Soc. Am.
118
,
623
626
.
17.
Dorman
,
M. F.
,
Gifford
,
R. H.
,
Spahr
,
A. J.
, and
McKarns
,
S. A.
(
2008
). “
The benefits of combining acoustic and electric stimulation for the recognition of speech, voice and melodies
,”
Audiol. Neurotol.
13
,
105
112
.
18.
Dorman
,
M. F.
,
Loizou
,
P. C.
,
Fitzke
,
J.
, and
Tu
,
Z.
(
1998
). “
The recognition of sentences in noise by normal-hearing listeners using simulations of cochlear-implant signal processors with 6–20 channels
,”
J. Acoust. Soc. Am.
104
,
3583
3585
.
19.
Drager
,
K. D.
, and
Reichle
,
J. E.
(
2001
). “
Effects of discourse context on the intelligibility of synthesized speech for young adult and older adult listeners: Applications for AAC
,”
J. Speech Lang. Hear. Res.
44
,
1052
1057
.
20.
Dubno
,
J. R.
,
Ahlstrom
,
J. B.
, and
Horwitz
,
A. R.
(
2000
). “
Use of context by young and aged adults with normal hearing
,”
J. Acoust. Soc. Am.
107
,
538
546
.
21.
Fetterman
,
B. L.
, and
Domico
,
E. H.
(
2002
). “
Speech recognition in background noise of cochlear implant patients
,”
Otolaryngol.—Head Neck Surg.
126
,
257
263
.
22.
Finley
,
C. C.
, and
Skinner
,
M. W.
(
2008
). “
Role of electrode placement as a contributor to variability in cochlear implant outcomes
,”
Otol. Neurotol.
29
,
920
.
23.
Firszt
,
J. B.
,
Holden
,
L. K.
,
Skinner
,
M. W.
,
Tobey
,
E. A.
,
Peterson
,
A.
,
Gaggl
,
W.
,
Runge-Samuelson
,
C. L.
, and
Wackym
,
P. A.
(
2004
). “
Recognition of speech presented at soft to loud levels by adult cochlear implant recipients of three cochlear implant systems
,”
Ear Hear.
25
,
375
387
.
24.
Freyman
,
R. L.
,
Balakrishnan
,
U.
, and
Helfer
,
K. S.
(
2004
). “
Effect of number of masking talkers and auditory priming on informational masking in speech recognition
,”
J. Acoust. Soc. Am.
115
,
2246
2256
.
25.
Friesen
,
L. M.
,
Shannon
,
R. V.
,
Baskent
,
D.
, and
Wang
,
X.
(
2001
). “
Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants
,”
J. Acoust. Soc. Am.
110
,
1150
1163
.
26.
Friesen
,
L. M.
,
Shannon
,
R. V.
, and
Cruz
,
R. J.
(
2005
). “
Effects of stimulation rate on speech recognition with cochlear implants
,”
Audiol. Neurotol.
10
,
169
184
.
27.
Fu
,
Q.
(
2012
). “
Angel Sound: Interactive listening rehabilitation and functional hearing test program (version 5.08. 03) [computer software]
,” available at http://angelsound.emilyfufoundation.org/.
28.
Fu
,
Q.-J.
,
Chinchilla
,
S.
, and
Galvin
,
J. J.
(
2004a
). “
The role of spectral and temporal cues in voice gender discrimination by normal-hearing listeners and cochlear implant users
,”
J. Assoc. Res. Otolaryngol.
5
,
253
260
.
29.
Fu
,
Q.-J.
,
Galvin
,
J.
,
Wang
,
X.
, and
Nogaki
,
G.
(
2004b
). “
Effects of auditory training on adult cochlear implant patients: A preliminary report
,”
Cochlear Implants Int.
5
,
84
90
.
30.
Fu
,
Q.-J.
, and
Nogaki
,
G.
(
2005
). “
Noise susceptibility of cochlear implant users: The role of spectral resolution and smearing
,”
J. Assoc. Res. Otolaryngol.
6
,
19
27
.
31.
Gilbert
,
G.
,
Bergeras
,
I.
,
Voillery
,
D.
, and
Lorenzi
,
C.
(
2007
). “
Effects of periodic interruptions on the intelligibility of speech based on temporal fine-structure or envelope cues
,”
J. Acoust. Soc. Am.
122
,
1336
1339
.
32.
Gnansia
,
D.
,
Pressnitzer
,
D.
,
Péan
,
V.
,
Meyer
,
B.
, and
Lorenzi
,
C.
(
2010
). “
Intelligibility of interrupted and interleaved speech for normal-hearing listeners and cochlear implantees
,”
Hear. Res.
265
,
46
53
.
33.
Greenwood
,
D. D.
(
1990
). “
A cochlear frequency-position function for several species—29 years later
,”
J. Acoust. Soc. Am.
87
,
2592
2605
.
34.
Hervais-Adelman
,
A.
,
Davis
,
M. H.
,
Johnsrude
,
I. S.
, and
Carlyon
,
R. P.
(
2008
). “
Perceptual learning of noise vocoded words: Effects of feedback and lexicality
,”
J. Exp. Psychol. Human Percept. Perform.
34
,
460
.
35.
Holden
,
L. K.
,
Finley
,
C. C.
,
Firszt
,
J. B.
,
Holden
,
T. A.
,
Brenner
,
C.
,
Potts
,
L. G.
,
Gotter
,
B. D.
,
Vanderhoof
,
S. S.
,
Mispagel
,
K.
, and
Heydebrand
,
G.
(
2013
). “
Factors affecting open-set word recognition in adults with cochlear implants
,”
Ear Hear.
34
,
342
.
36.
Jin
,
S.-H.
, and
Nelson
,
P. B.
(
2010
). “
Interrupted speech perception: The effects of hearing sensitivity and frequency resolution
,”
J. Acoust. Soc. Am.
128
,
881
889
.
37.
Kalikow
,
D. N.
,
Stevens
,
K. N.
, and
Elliott
,
L. L.
(
1977
). “
Development of a test of speech intelligibility in noise using sentence materials with controlled word predictability
,”
J. Acoust. Soc. Am.
61
,
1337
1351
.
38.
Khan
,
A. M.
,
Handzel
,
O.
,
Burgess
,
B. J.
,
Damian
,
D.
,
Eddington
,
D. K.
, and
Nadol
,
J. B.
, Jr.
(
2005
). “
Is word recognition correlated with the number of surviving spiral ganglion cells and electrode insertion depth in human subjects with cochlear implants?
,”
Laryngoscope
115
,
672
677
.
39.
Kong
,
Y.-Y.
,
Donaldson
,
G.
, and
Somarowthu
,
A.
(
2015
). “
Effects of contextual cues on speech recognition in simulated electric-acoustic stimulation
,”
J. Acoust. Soc. Am.
137
,
2846
2857
.
40.
Litovsky
,
R.
,
Parkinson
,
A.
,
Arcaroli
,
J.
, and
Sammeth
,
C.
(
2006
). “
Simultaneous bilateral cochlear implantation in adults: A multicenter clinical study
,”
Ear Hear.
27
,
714
.
41.
Litvak
,
L. M.
,
Spahr
,
A. J.
,
Saoji
,
A. A.
, and
Fridman
,
G. Y.
(
2007
). “
Relationship between perception of spectral ripple and speech recognition in cochlear implant and vocoder listeners
,”
J. Acoust. Soc. Am.
122
,
982
991
.
42.
Loebach
,
J. L.
,
Bent
,
T.
, and
Pisoni
,
D. B.
(
2008
). “
Multiple routes to the perceptual learning of speech
,”
J. Acoust. Soc. Am.
124
,
552
561
.
43.
Loebach
,
J. L.
, and
Pisoni
,
D. B.
(
2008
). “
Perceptual learning of spectrally degraded speech and environmental sounds
,”
J. Acoust. Soc. Am.
123
,
1126
1139
.
44.
Loebach
,
J. L.
,
Pisoni
,
D. B.
, and
Svirsky
,
M. A.
(
2010
). “
Effects of semantic context and feedback on perceptual learning of speech processed through an acoustic simulation of a cochlear implant
,”
J. Exp. Psychol. Human Percept. Perform.
36
,
224
.
45.
Lorenzi
,
C.
,
Gilbert
,
G.
,
Carn
,
H.
,
Garnier
,
S.
, and
Moore
,
B. C.
(
2006
). “
Speech perception problems of the hearing impaired reflect inability to use temporal fine structure
,”
Proc. Natl. Acad. Sci. U.S.A.
103
,
18866
18869
.
46.
Macdonald
,
H.
,
Davis
,
M. H.
,
Pichora-Fuller
,
K.
, and
Johnsrude
,
I. S.
(
2008
). “
Contextual influences: Perception of sentences in noise is facilitated similarly in young and older listeners by meaningful semantic context; neural correlates explored via functional magnetic resonance imaging (fMRI)
,”
J. Acoust. Soc. Am.
123
,
3887
.
47.
Miller
,
G. A.
,
Heise
,
G. A.
, and
Lichten
,
W.
(
1951
). “
The intelligibility of speech as a function of the context of the test materials
,”
J. Exp. Psychol.
41
,
329
.
48.
Miller
,
G. A.
, and
Isard
,
S.
(
1963
). “
Some perceptual consequences of linguistic rules
,”
J. Mem. Lang.
2
,
217
.
49.
Nelson
,
P. B.
, and
Jin
,
S.-H.
(
2004
). “
Factors affecting speech understanding in gated interference: Cochlear implant users and normal-hearing listeners
,”
J. Acoust. Soc. Am.
115
,
2286
2294
.
50.
Nelson
,
P. B.
,
Jin
,
S.-H.
,
Carney
,
A. E.
, and
Nelson
,
D. A.
(
2003
). “
Understanding speech in modulated interference: Cochlear implant users and normal-hearing listeners
,”
J. Acoust. Soc. Am.
113
,
961
968
.
51.
Obleser
,
J.
, and
Kotz
,
S. A.
(
2011
). “
Multiple brain signatures of integration in the comprehension of degraded speech
,”
Neuroimage
55
,
713
723
.
52.
Patro
,
C.
, and
Mendel
,
L. L.
(
2016
). “
Role of contextual cues on the perception of spectrally reduced interrupted speech
,”
J. Acoust. Soc. Am.
140
,
1336
1345
.
53.
Patro
,
C.
, and
Mendel
,
L. L.
(
2018
). “
Gated word recognition by postlingually deafened adults with cochlear implants: Influence of semantic context
,”
J. Speech Lang. Hear. Res.
61
,
145
158
.
54.
Peterson
,
G. E.
, and
Lehiste
,
I.
(
1962
). “
Revised CNC lists for auditory tests
,”
J. Speech Hear. Dis.
27
(
1
),
62
70
.
55.
Pichora-Fuller
,
M. K.
,
Schneider
,
B. A.
, and
Daneman
,
M.
(
1995
). “
How young and old adults listen to and remember speech in noise
,”
J. Acoust. Soc. Am.
97
,
593
608
.
56.
Samuelsson
,
S.
, and
Rönnberg
,
J.
(
1993
). “
Implicit and Explicit Use of Scripted Constraints in Lipreading
,”
Euro. J. Cog. Psych.
5
(
2
),
201
233
.
57.
Shahsavarani
,
B.
,
Carrell
,
T.
, and
Samal
,
A.
(
2015
). “
The effect of semantic cues on intelligibility: A comparison between spectrally sparse speech and natural speech in noise
,”
J. Acoust. Soc. Am.
138
,
1812
.
58.
Shannon
,
R. V.
(
1992
). “
Temporal modulation transfer functions in patients with cochlear implants
,”
J. Acoust. Soc. Am.
91
,
2156
2164
.
59.
Shannon
,
R. V.
,
Zeng
,
F.-G.
,
Kamath
,
V.
,
Wygonski
,
J.
, and
Ekelid
,
M.
(
1995
). “
Speech recognition with primarily temporal cues
,”
Science
270
,
303
304
.
60.
Skinner
,
M. W.
,
Ketten
,
D. R.
,
Holden
,
L. K.
,
Harding
,
G. W.
,
Smith
,
P. G.
,
Gates
,
G. A.
,
Neely
,
J. G.
,
Kletzker
,
G. R.
,
Brunsden
,
B.
, and
Blocker
,
B.
(
2002
). “
CT-derived estimation of cochlear morphology and electrode array position in relation to word recognition in Nucleus-22 recipients
,”
J. Assoc. Res. Otolaryngol.
3
,
332
350
.
61.
Smith
,
Z. M.
,
Delgutte
,
B.
, and
Oxenham
,
A. J.
(
2002
). “
Chimaeric sounds reveal dichotomies in auditory perception
,”
Nature
416
,
87
.
62.
Spahr
,
A. J.
,
Dorman
,
M. F.
, and
Loiselle
,
L. H.
(
2007
). “
Performance of patients using different cochlear implant systems: Effects of input dynamic range
,”
Ear Hear.
28
,
260
275
.
63.
Srinivasan
,
S.
, and
Wang
,
D.
(
2005
). “
A schema-based model for phonemic restoration
,”
Speech Commun.
45
,
63
87
.
64.
Stickney
,
G. S.
,
Zeng
,
F.-G.
,
Litovsky
,
R.
, and
Assmann
,
P.
(
2004
). “
Cochlear implant speech recognition with speech maskers
,”
J. Acoust. Soc. Am.
116
,
1081
1091
.
65.
Studebaker
,
G. A.
(
1985
). “
A ‘rationalized’ arcsine transform
,”
J. Speech Lang. Hear. Res.
28
,
455
462
.
66.
van Rooij
,
J. C.
, and
Plomp
,
R.
(
1991
). “
The effect of linguistic entropy on speech perception in noise in young and elderly listeners
,”
J. Acoust. Soc. Am.
90
,
2985
2991
.
67.
Venail
,
F.
,
Mathiolon
,
C.
,
De Champfleur
,
S. M.
,
Piron
,
J. P.
,
Sicard
,
M.
,
Villemus
,
F.
,
Vessigaud
,
M. A.
,
Sterkers-Artieres
,
F.
,
Mondain
,
M.
, and
Uziel
,
A.
(
2015
). “
Effects of electrode array length on frequency-place mismatch and speech perception with cochlear implants
,”
Audiol. Neurotol.
20
,
102
111
.
68.
Wang
,
X.
, and
Humes
,
L. E.
(
2010
). “
Factors influencing recognition of interrupted speech
,”
J. Acoust. Soc. Am.
128
,
2100
2111
.
69.
Winn
,
M.
(
2016
). “
Rapid release from listening effort resulting from semantic context, and effects of spectral degradation and cochlear implants
,”
Trends Hear.
20
,
2331216516669723
.
70.
Zeng
,
F.-G.
(
2004
). “
Trends in cochlear implants
,”
Trends Amplif.
8
,
1
34
.
71.
Zeng
,
F.-G.
,
Grant
,
G.
,
Niparko
,
J.
,
Galvin
,
J.
,
Shannon
,
R.
,
Opie
,
J.
, and
Segel
,
P.
(
2002
). “
Speech dynamic range and its effect on cochlear implant performance
,”
J. Acoust. Soc. Am.
111
,
377
386
.
72.
Zeng
,
F.-G.
,
Rebscher
,
S.
,
Harrison
,
W.
,
Sun
,
X.
, and
Feng
,
H.
(
2008
). “
Cochlear implants: System design, integration, and evaluation
,”
IEEE Rev. Biomed. Eng.
1
,
115
142
.
You do not currently have access to this content.