Burst wave lithotripsy is a method to noninvasively fragment urinary stones by short pulses of focused ultrasound. In this study, physical mechanisms of stone fracture during burst wave lithotripsy were investigated. Photoelasticity imaging was used to visualize elastic wave propagation in model stones and compare results to numerical calculations. Epoxy and glass stone models were made into rectangular, cylindrical, or irregular geometries and exposed in a degassed water bath to focused ultrasound bursts at different frequencies. A high-speed camera was used to record images of the stone during exposure through a circular polariscope backlit by a monochromatic flash source. Imaging showed the development of periodic stresses in the stone body with a pattern dependent on frequency. These patterns were identified as guided wave modes in cylinders and plates, which formed standing waves upon reflection from the distal surfaces of the stone model, producing specific locations of stress concentration in the models. Measured phase velocities compared favorably to numerically calculated modes dependent on frequency and material. Artificial stones exposed to bursts produced cracks at positions anticipated by this mechanism. These results support guided wave generation and reflection as a mechanism of stone fracture in burst wave lithotripsy.

1.
R. O.
Cleveland
and
J. A.
McAteer
, “
Physics of shock-wave lithotripsy
,” in
Smith's Textbook of Endourology
(
Wiley-Blackwell
,
New York
,
2012
), pp.
527
558
.
2.
R. O.
Cleveland
and
O. A.
Sapozhnikov
, “
Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy
,”
J. Acoust. Soc. Am.
118
,
2667
2676
(
2005
).
3.
O. A.
Sapozhnikov
,
A. D.
Maxwell
,
B.
MacConaghy
, and
M. R.
Bailey
, “
A mechanistic analysis of stone fracture in lithotripsy
,”
J. Acoust. Soc. Am.
121
,
1190
1202
(
2007
).
4.
Y.
Zhang
,
I.
Nault
,
S.
Mitran
,
E. S.
Iversen
, and
P.
Zhong
, “
Effects of stone size on the comminution process and efficiency in shock wave lithotripsy
,”
Ultrasound Med. Biol.
42
,
2662
2675
(
2016
).
5.
A.
Neisius
and
P.
Zhong
, “
Physics of shock-wave lithotripsy
,” in
Smith's Textbook of Endourology
(
Wiley-Blackwell
,
New York
,
2019
), pp.
689
712
.
6.
P.
Zhong
, “
Shock wave lithotripsy
,” in
Bubble Dynamics and Shock Waves
(
Springer
,
New York
,
2013
), pp.
291
338
.
7.
Y. A.
Pishchalnikov
,
O. A.
Sapozhnikov
,
M. R.
Bailey
,
J. C.
Williams
,
R. O.
Cleveland
,
T.
Colonius
,
L. A.
Crum
,
A. P.
Evan
, and
J. A.
McAteer
, “
Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves
,”
J. Endourol.
17
,
435
446
(
2003
).
8.
S.
Zhu
,
F. H.
Cocks
,
G. M.
Preminger
, and
P.
Zhong
, “
The role of stress waves and cavitation in stone comminution in shock wave lithotripsy
,”
Ultrasound Med. Biol.
28
,
661
671
(
2002
).
9.
A. D.
Maxwell
,
B. W.
Cunitz
,
W.
Kreider
,
O. A.
Sapozhnikov
,
R. S.
Hsi
,
J. D.
Harper
,
M. R.
Bailey
, and
M. D.
Sorensen
, “
Fragmentation of urinary calculi in vitro by burst wave lithotripsy
,”
J. Urol.
193
,
338
344
(
2015
).
10.
O. F.
Miller
and
C. J.
Kane
, “
Time to stone passage for observed ureteral calculi: A guide for patient education
,”
J. Urol.
162
,
688
690
(
1999
), discussion 690-1.
11.
J.
Jendeberg
,
H.
Geijer
,
M.
Alshamari
,
B.
Cierzniak
, and
M.
Lidén
, “
Size matters: The width and location of a ureteral stone accurately predict the chance of spontaneous passage
,”
Eur. Radiol.
27
,
4775
4785
(
2017
).
12.
K.
Maeda
,
A. D.
Maxwell
,
T.
Colonius
,
W.
Kreider
, and
M. R.
Bailey
, “
Energy shielding by cavitation bubble clouds in burst wave lithotripsy
,”
J. Acoust. Soc. Am.
144
,
2952
2961
(
2018
).
13.
P. C.
May
,
W.
Kreider
,
A. D.
Maxwell
,
Y. N.
Wang
,
B. W.
Cunitz
,
P. M.
Blomgren
,
C. D.
Johnson
,
J. S. H.
Park
,
M. R.
Bailey
,
D.
Lee
,
J. D.
Harper
, and
M. D.
Sorensen
, “
Detection and evaluation of renal injury in burst wave lithotripsy using ultrasound and magnetic resonance imaging
,”
J. Endourol.
31
,
786
792
(
2017
).
14.
Y. A.
Pishchalnikov
,
J. C.
Williams
, and
J. A.
McAteer
, “
Bubble proliferation in the cavitation field of a shock wave lithotripter
,”
J. Acoust. Soc. Am.
130
,
EL87
EL93
(
2011
).
15.
S.
Frank
,
J.
Lautz
,
G. N.
Sankin
,
A. J.
Szeri
, and
P.
Zhong
, “
Bubble proliferation or dissolution of cavitation nuclei in the beam path of a shock-wave lithotripter
,”
Phys. Rev. Appl.
3
,
034002
(
2015
).
16.
M. R.
Bailey
,
Y. A.
Pishchalnikov
,
O. A.
Sapozhnikov
,
R. O.
Cleveland
,
J. A.
McAteer
,
N. A.
Miller
,
I. V.
Pishchalnikova
,
B. A.
Connors
,
L. A.
Crum
, and
A. P.
Evan
, “
Cavitation detection during shock-wave lithotripsy
,”
Ultrasound Med. Biol.
31
,
1245
1256
(
2005
).
17.
J. A.
McAteer
and
A. P.
Evan
, “
The acute and long-term adverse effects of shock wave lithotripsy
,”
Semin. Nephrol.
28
,
200
213
(
2008
).
18.
T.
Hall
and
C.
Cain
, “
A low cost compact 512 channel therapeutic ultrasound system for transcutaneous ultrasound surgery
,”
AIP Conf. Proc.
829
,
445
449
(
2006
).
19.
A. D.
Maxwell
,
P. V.
Yuldashev
,
W.
Kreider
,
T. D.
Khokhlova
,
G. R.
Schade
,
T. L.
Hall
,
O. A.
Sapozhnikov
,
M. R.
Bailey
, and
V. A.
Khokhlova
, “
A prototype therapy system for transcutaneous application of boiling histotripsy
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control.
64
,
1542
1557
(
2017
).
20.
M. S.
Canney
,
M. R.
Bailey
,
L. A.
Crum
,
V. A.
Khokhlova
, and
O. A.
Sapozhnikov
, “
Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach
,”
J. Acoust. Soc. Am.
124
,
2406
2420
(
2008
).
21.
D.
Heimbach
,
R.
Munver
,
P.
Zhong
,
J.
Jacobs
,
A.
Hesse
,
S. C.
Müller
, and
G. M.
Preminger
, “
Acoustic and mechanical properties of artificial stones in comparison to natural kidney stones
,”
J. Urol.
164
,
537
544
(
2000
).
22.
P. J.
Rae
and
E. N.
Brown
, “
Some observations on measuring sound speeds in polymers using time-of-flight
,”
Exp. Techn.
40
,
1085
1097
(
2016
).
23.
C.
Türk
,
A.
Petøík
,
K.
Sarica
,
C.
Seitz
,
A.
Skolarikos
,
M.
Straub
, and
T.
Knoll
, “
EAU guidelines on interventional treatment for urolithiasis
,”
Eur Urol.
69
,
475
482
(
2016
).
24.
Y.
Liu
and
P.
Zhong
, “
BegoStone—A new stone phantom for shock wave lithotripsy research
,”
J. Acoust. Soc. Am.
112
,
1265
1268
(
2002
).
25.
E.
Esch
,
W. N.
Simmons
,
G.
Sankin
,
H. F.
Cocks
,
G. M.
Preminger
, and
P.
Zhong
, “
A simple method for fabricating artificial kidney stones of different physical properties
,”
Urol. Res.
38
,
315
319
(
2010
).
26.
K.
Ramesh
,
Digital Photoelasticity: Advanced Techniques and Applications
(
Springer
,
Berlin
,
2000
).
27.
X.
Xi
and
P.
Zhong
, “
Dynamic photoelastic study of the transient stress field in solids during shock wave lithotripsy
,”
J. Acoust. Soc. Am.
109
,
1226
1239
(
2001
).
28.
T. T. P.
Nguyen
,
R.
Tanabe
, and
Y.
Ito
, “
Laser-induced shock process in under-liquid regime studied by time-resolved photoelasticity imaging technique
,”
Appl. Phys. Lett.
102
,
124103
(
2013
).
29.
Y. H.
Nam
and
S. S.
Lee
, “
A quantitative evaluation of elastic wave in solid by stroboscopic photoelasticity
,”
J. Sound Vib.
259
,
1199
1207
(
2003
).
30.
H. U.
Li
and
K.
Negishi
, “
Visualization of Lamb mode patterns in a glass plate
,”
Ultrasonics.
32
,
243
248
(
1994
).
31.
A.
Pawlak
and
A.
Galeski
, “
Photoelastic method of three-dimensional stress determination around axisymmetric inclusions
,”
Polymer Eng. Sci.
36
,
2736
2749
(
1996
).
32.
R. C.
Wyatt
, “
Visualization of pulsed ultrasound using stroboscopic photoelasticity
,”
Non-destructive Test.
5
,
354
358
(
1972
).
33.
P.
Bocchini
,
A.
Marzani
, and
E.
Viola
, “
Graphical user interface for guided acoustic waves
,”
J. Comp. Civ. Eng.
25
,
202
210
(
2010
).
34.
B.
Pavlakovic
,
M.
Lowe
,
D.
Alleyne
, and
P.
Cawley
, “
Disperse: A general purpose program for creating dispersion curves
,” in
Review of Progress in Quantitative Nondestructive Evaluation
(
Springer
,
Berlin
,
1997
), pp.
185
192
.
35.
G.
Maze
,
J. L.
Izbicki
, and
J.
Ripoche
, “
Resonances of plates and cylinders: Guided waves
,”
J. Acoust. Soc. Am.
77
,
1352
1357
(
1985
).
36.
J. A.
McAteer
,
J. C.
Williams
, Jr.
,
R. O.
Cleveland
,
J.
Van Cauwelaert
,
M. R.
Bailey
,
D. A.
Lifshitz
, and
A. P.
Evan
, “
Ultracal-30 gypsum artificial stones for research on the mechanisms of stone breakage in shock wave lithotripsy
,”
Urol. Res.
33
,
429
434
(
2005
).
37.
M. L. L.
Wijerathne
,
M.
Hori
,
H.
Sakaguchi
, and
K.
Oguni
, “
3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy
,”
IOP Conf. Series: Mat. Sci. Eng.
10
,
012120
(
2010
).
38.
Y.
Cho
and
J. L.
Rose
, “
A boundary element solution for a mode conversion study on the edge reflection of Lamb waves
,”
J. Acoust. Soc. Am.
99
,
2097
2109
(
1996
).
39.
F.
Chati
,
F.
Léon
,
D.
Décultot
, and
G.
Maze
, “
Maxima and minima of the displacement components for the Lamb modes
,”
J. Acoust. Soc. Am.
129
,
1899
1904
(
2011
).
40.
V.
Pagneux
, “
Trapped modes and edge resonances in acoustics and elasticity
,” in
Dynamic Localization Phenomena in Elasticity, Acoustics and Electromagnetism
(
Springer
,
Berlin
,
2013
), pp.
181
223
.
41.
J. B.
Lawrie
and
J.
Kaplunov
, “
Edge waves and resonance on elastic structures: An overview
,”
Math. Mech. Solids.
17
,
4
16
(
2012
).
42.
C. A.
Zarse
,
J. A.
McAteer
,
M.
Tann
,
A. J.
Sommer
,
S. C.
Kim
,
R. F.
Paterson
,
E. K.
Hatt
,
J. E.
Lingeman
,
A. P.
Evan
, and
J. C.
Williams
, “
Helical computed tomography accurately reports urinary stone composition using attenuation values: In vitro verification using high-resolution micro-computed tomography calibrated to Fourier transform infrared microspectroscopy
,”
Urology
63
,
828
833
(
2004
).
43.
A. D.
Maxwell
,
T.-Y.
Wang
,
C. A.
Cain
,
J. B.
Fowlkes
,
O. A.
Sapozhnikov
,
M. R.
Bailey
, and
Z.
Xu
, “
Cavitation clouds created by shock scattering from bubbles during histotripsy
,”
J. Acoust. Soc. Am.
130
,
1888
1989
(
2011
).
44.
A. D.
Maxwell
,
Y.-N.
Wang
,
W.
Kreider
,
B. W.
Cunitz
,
F.
Starr
,
D.
Lee
,
Y.
Nazari
,
J. C.
Williams
, Jr.
,
M. R.
Bailey
, and
M. D.
Sorensen
, “
Evaluation of renal stone comminution and injury by burst wave lithotripsy in a pig model
,”
J. Endourol.
33
,
787
792
(
2019
).
45.
W. N.
Simmons
,
F. H.
Cocks
,
P.
Zhong
, and
G.
Preminger
, “
A composite kidney stone phantom with mechanical properties controllable over the range of human kidney stones
,”
J. Mech. Behav. Biomed. Mat.
3
,
130
133
(
2010
).
46.
T. J.
Matula
,
P. R.
Hilmo
,
B. D.
Storey
, and
A. J.
Szeri
, “
Radial response of individual bubbles subjected to shock wave lithotripsy pulses in vitro
,”
Phys. Fluids.
14
,
913
921
(
2002
).
47.
M.
Nayeem
,
M.
Kondaiah
,
K.
Sreekanth
, and
D. Krishna
Rao
, “
Thermoacoustic, volumetric, and viscometric investigations in binary liquid system of cyclohexanone with benzyl benzoate at T = 308.15, 313.15, and 318.15 K
,”
J. Thermodyn.
2014
,
487403
.
48.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data
, 71st ed. (
CRC Press
,
Boca Raton
,
1990
).
49.
T.
Wunderlich
and
P. O.
Brunn
, “
A wall layer correction for ultrasound measurement in tube flow: Comparison between theory and experiment
,”
Flow Meas. Inst.
11
,
63
69
(
2000
).
You do not currently have access to this content.