Stability and duration of ultrasonic phantoms are still subjects of research. This work presents a tissue-mimicking material (TMM) to evaluate high-intensity therapeutic ultrasound (HITU) devices, composed of gellan gum (matrix), microparticles (scatterers), and chemicals. The ultrasonic velocity and attenuation coefficient were characterized as a function of temperature (range 20 °C–85 °C). The nonlinear parameter B/A was determined by the finite amplitude insertion substitution (FAIS) method, and the shear modulus was determined by a transient elastography technique. The thermal conductivity and specific heat were determined by the line source method. The attenuation was stable for 60 days, and in an almost linear frequency dependence (0.51f0.96 dB cm−1), at 20 °C (1–10 MHz). All other evaluated physical parameters are also close to typical soft tissue values. Longitudinal ultrasonic velocities were between 1.49 and 1.75 mm μs−1, the B/A parameter was 7.8 at 30 °C, and Young's modulus was 23.4 kPa. The thermal conductivity and specific heat values were 0.7 W(m K)−1 and 4.7 kJ(kg K)−1, respectively. Consistent temperature increases and thermal doses occurred under identical HITU exposures. Low cost, longevity, thermal stability, and thermal repeatability make TMM an excellent material for ultrasonic thermal applications. The TMM developed has the potential to assess the efficacy of hyperthermia devices and could be used to adjust the ultrasonic emission of HITU devices.

1.
American Institute of Ultrasound in Medicine, Technical Standards Committee.
(
1995
).
Methods for Specifying Acoustic Properties of Tissue Mimicking Phantoms and Objects. Stage 1
(
American Institute of Ultrasound in Medicine
,
Laurel, MD
).
2.
Anderson
,
J. J.
,
Herd
,
M.-T.
,
King
,
M. R.
,
Haak
,
A.
,
Hafez
,
Z. T.
,
Song
,
J.
,
Oelze
,
M. L.
,
Madsen
,
E. L.
,
Zagzebski
,
J. A.
,
O'Brien
,
W. D.
, and
Hall
,
T. J.
(
2010
). “
Interlaboratory comparison of backscatter coefficient estimates for tissue-mimicking phantoms
,”
Ultrason. Imaging
32
,
48
64
.
3.
Azhari
,
H.
(
2010
). “
Appendix A: Typical acoustic properties of tissues
,” in
Basics of Biomedical Ultrasound for Engineers
, 1st ed. (Wiley, Hoboken, NJ), pp.
313
314
.
4.
Bamber
,
J. C.
, and
Hill
,
C. R.
(
1979
). “
Ultrasonic attenuation and propagation speed in mammalian tissues as a function of temperature
,”
Ultrasound Med. Biol.
5
,
149
157
.
5.
Benech
,
N.
, and
Negreira
,
C. A.
(
2005
). “
Longitudinal and lateral low frequency head wave analysis in soft media
,”
J. Acoust. Soc. Am.
117
,
3424
3431
.
6.
Bethesda
,
M.
(
1998
). “
Tissue substitutes, phantoms and computational modeling in medical ultrasound
,” ICRU Report 61,
132
pp.
7.
Beyer
,
R. T.
(
1973
). Nonlinear Acoustics (Naval Ship Systems Command, Providence, RI), 414 pp., available at www.dtic.mil/get-tr-doc/pdf?AD=ADA098556 (Last viewed December 2, 2019).
8.
Campbell
,
G. S.
,
Huffaker
,
E. M.
,
Wacker
,
B. T.
, and
Wacker
,
K. C.
(
2005
). “
Use of the line heat source method to measure thermal conductivity of insulation and other porous materials
,” in
Proc. Twenty-Seventh International Thermal Conductivity Conference (ITCC) and Proceedings of the Eighteenth International Thermal Expansion Symposium (ITES) (Thermal Conduct. 27/ Therm. Expans. 15)
, edited by
H.
Wang
and
W.
Porter
(
DEStech
,
Knoxville, TN)
, pp.
187
195
.
9.
Cassanelli
,
M.
,
Norton
,
I.
, and
Mills
,
T.
(
2017
). “
Effect of alcohols on gellan gum gel structure: Bridging the molecular level and the three-dimensional network
,”
Food Struct.
14
,
112
120
.
10.
Chen
,
R. K.
, and
Shih
,
A. J.
(
2013
). “
Multi-modality gellan gum-based tissue-mimicking phantom with targeted mechanical, electrical, and thermal properties
,”
Phys. Med. Biol.
58
,
5511
5525
.
11.
Christensen
,
D.
(
1988
).
Ultrasonic Bioinstrumentation
(
Wiley
,
New York
),
256
pp.
12.
Clarke
,
R. L.
,
Bush
,
N. L.
, and
Ter Haar
,
G. R.
(
2003
). “
The changes in acoustic attenuation due to in vitro heating
,”
Ultrasound Med. Biol.
29
,
127
135
.
13.
Cortela
,
G.
,
Lima
,
K. M.
,
Maggi
,
L. E.
,
Negreira
,
C.
, and
Pereira
,
W. C. A.
(
2015
). “
Evaluation of acoustic and thermal properties of gellan-gum phantom to mimic biological tissue
,” in
2015 Pan American Health Care Exchanges
(
IEEE
,
New York
), pp.
1
4
.
14.
Dong
,
F.
,
Madsen
,
E. L.
,
MacDonald
,
M. C.
, and
Zagzebski
,
J. A.
(
1999
). “
Nonlinearity parameter for tissue-mimicking materials
,”
Ultrasound Med. Biol.
25
,
831
838
.
15.
Duck
,
F. A.
(
1990
).
Physical Properties of Tissue: A Complete Reference Book
(
Academic
,
London
), pp.
9
37
.
16.
Filonenko
,
E. A.
, and
Khokhlova
,
V. A.
(
2001
). “
Effect of acoustic nonlinearity on heating of biological tissue by high-intensity focused ultrasound
,”
Acoust. Phys.
47
,
468
475
.
17.
Franchi-Abella
,
S.
,
Elie
,
C.
, and
Correas
,
J.-M.
(
2013
). “
Ultrasound elastography: Advantages, limitations and artefacts of the different techniques from a study on a phantom
,”
Diagn. Interv. Imaging
94
,
497
501
.
18.
Gammell
,
P. M.
,
Le Croissette
,
D. H.
, and
Heyser
,
R. C.
(
1979
). “
Temperature and frequency dependence of ultrasonic attenuation in selected tissues
,”
Ultrasound Med. Biol.
5
,
269
277
.
19.
Gennisson
,
J.-L.
,
Deffieux
,
T.
,
Fink
,
M.
, and
Tanter
,
M.
(
2013
). “
Ultrasound elastography: Principles and techniques
,”
Diagn. Interv. Imaging
94
,
487
495
.
20.
Gertner
,
M. R.
,
Wilson
,
B. C.
, and
Sherar
,
M. D.
(
1997
). “
Ultrasound properties of liver tissue during heating
,”
Ultrasound Med. Biol.
23
,
1395
1403
.
21.
Giavasis
,
I.
,
Harvey
,
L. M.
, and
McNeil
,
B.
(
2000
). “
Gellan gum
,”
Crit. Rev. Biotechnol.
20
,
177
211
.
22.
Gong
,
X.
,
Zhu
,
Z.
,
Shi
,
T.
, and
Huang
,
J.
(
1989
). “
Determination of the acoustic nonlinearity parameter in biological media using FAIS and ITD methods
,”
J. Acoust. Soc. Am.
86
,
1
5
.
23.
Hall
,
T. J.
,
Bilgen
,
M.
,
Insana
,
M. F.
, and
Krouskop
,
T. A.
(
1997
). “
Phantom materials for elastography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
1355
1365
.
24.
Hariharan
,
P.
,
Myers
,
M. R.
, and
Banerjee
,
R. K.
(
2007
). “
HIFU procedures at moderate intensities—Effect of large blood vessels
,”
Phys. Med. Biol.
52
,
3493
3513
.
25.
Harris
,
G. R.
,
Liu
,
Y.
,
Maruvada
,
S.
, and
Gammell
,
P. M.
(
2007
). “
P4H-1 finite amplitude method for measurement of nonlinearity parameter B/A using plane-wave tone bursts
,” in
2007 IEEE Ultrasonics Symposium Proceedings
, pp.
2072
2074
.
26.
Holt
,
R. G.
, and
Roy
,
R. A.
(
2001
). “
Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material
,”
Ultrasound Med. Biol.
27
,
1399
412
.
27.
Huang
,
J.
,
Holt
,
R. G.
,
Cleveland
,
R. O.
, and
Roy
,
R. A.
(
2004
). “
Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms
,”
J. Acoust. Soc. Am.
116
,
2451
2458
.
28.
IEC
(
2006
). 62306 ed. 1,
Ultrasonics—Field Characterisation—Test Objects for Determining Temperature Elevation in Diagnostic Ultrasound Fields
(
International Electrotechnical Commission
,
Geneva, Switzerland
),
75
pp.
29.
IEC
(
2007
). 60601-2-37 ed. 2,
Medical Electrical Equipment—Part 2-37: Particular Requirements for the Basic Safety and Essential Performance of Ultrasonic Medical Diagnostic and Monitoring Equipment
(
International Electrotechnical Commission
,
Geneva, Switzerland
).
30.
Jansson
,
P.-E.
,
Lindberg
,
B.
, and
Sandford
,
P. A.
(
1983
). “
Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea
,”
Carbohydr. Res.
124
,
135
139
.
31.
Kennedy
,
J. E.
,
ter Haar
,
G. R.
,
Wu
,
F.
,
Gleeson
,
F. V.
,
Roberts
,
I. S.
,
Middleton
,
M. R.
, and
Cranston
,
D.
(
2004
). “
Contrast-enhanced ultrasound assessment of tissue response to high-intensity focused ultrasound
,”
Ultrasound Med. Biol.
30
,
851
854
.
32.
King
,
R. L.
,
Herman
,
B. A.
,
Maruvada
,
S.
,
Wear
,
K. A.
, and
Harris
,
G. R.
(
2007
). “
Development of a HIFU phantom
,”
AIP Conf. Proc.
911
,
351
356
.
33.
King
,
R. L.
,
Liu
,
Y.
,
Maruvada
,
S.
,
Herman
,
B. A.
,
Wear
,
K. A.
, and
Harris
,
G. R.
(
2011
). “
Development and characterization of a tissue-mimicking material for high-intensity focused ultrasound
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
,
1397
1405
.
34.
Ma
,
S.
,
Kong
,
Y. K.
,
Ahn
,
Y. M.
, and
Park
,
K. J.
(
2004
). “
Development of an ultrasound training phantom of the thyroid gland: Physical characteristics of TMM
,”
Jpn. J. Radiol. Technol.
60
,
1459
1466
.
35.
Madsen
,
E. L.
,
Dong
,
F.
,
Frank
,
G. R.
,
Garra
,
B. S.
,
Wear
,
K. A.
,
Wilson
,
T.
,
Zagzebski
,
J. A.
,
Miller
,
H. L.
,
Shung
,
K. K.
,
Wang
,
S. H.
,
Feleppa
,
E. J.
,
Liu
,
T.
,
O'Brien
,
W. D.
, Jr.,
Topp
,
K. A.
,
Sanghvi
,
N. T.
,
Zaitsev
,
A. V.
,
Hall
,
T. J.
,
Fowlkes
,
J. B.
,
Kripfgans
,
O. D.
, and
Miller
,
J. G.
(
1999
). “
Interlaboratory comparison of ultrasonic backscatter, attenuation, and speed measurements
,”
J. Ultrasound Med.
18
,
615
631
.
36.
Madsen
,
E. L.
,
Frank
,
G. R.
, and
Dong
,
F.
(
1998
). “
Liquid or solid ultrasonically tissue-mimicking materials with very low scatter
,”
Ultrasound Med. Biol.
24
,
535
542
.
37.
Madsen
,
E. L.
,
Zagzebski
,
J. A.
, and
Frank
,
G. R.
(
1982a
). “
Oil-in-gelatin dispersions for use as ultrasonically tissue-mimicking materials
,”
Ultrasound Med. Biol.
8
,
277
287
.
38.
Madsen
,
E. L.
,
Zagzebski
,
J. A.
, and
Frank
,
G. R.
(
1982b
). “
An anthropomorphic ultrasound breast phantom containing intermediate-sized scatterers
,”
Ultrasound Med. Biol.
8
,
381
392
.
39.
Mao
,
R.
,
Tang
,
J.
, and
Swanson
,
B. G.
(
2000
). “
Texture properties of high and low acyl mixed gellan gels
,”
Carbohydr. Polym.
41
,
331
338
.
40.
Mariappan
,
Y. K.
,
Glaser
,
K. J.
, and
Ehman
,
R. L.
(
2010
). “
Magnetic resonance elastography: A review
,”
Clin. Anat.
23
,
497
511
.
41.
Morris
,
E. R.
,
Nishinari
,
K.
, and
Rinaudo
,
M.
(
2012
). “
Gelation of gellan—A review
,”
Food Hydrocoll.
28
,
373
411
.
42.
Ophir
,
J.
(
1991
). “
Elastography: A quantitative method for imaging the elasticity of biological tissues
,”
Ultrason. Imaging
13
,
111
134
.
43.
Parker
,
K. J.
,
Doyley
,
M. M.
, and
Rubens
,
D. J.
(
2011
). “
Imaging the elastic properties of tissue: The 20 year perspective
,”
Phys. Med. Biol.
56
,
R1
R29
.
44.
Phillips
,
G. O.
, and
Williams
,
P. A.
(
2009
).
Handbook of Hydrocolloids
(
Woodhead
,
Sawston, UK
),
944
pp.
45.
Sandrin
,
L.
,
Cassereau
,
D.
, and
Fink
,
M.
(
2004
). “
The role of the coupling term in transient elastography
,”
J. Acoust. Soc. Am.
115
,
73
83
.
46.
Sandrin
,
L.
,
Tanter
,
M.
,
Gennisson
,
J.-L.
,
Catheline
,
S.
, and
Fink
,
M.
(
2002
). “
Shear elasticity probe for soft tissues with 1-D transient elastography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
49
,
436
446
.
47.
Sehgal
,
C. M.
,
Bahn
,
R. C.
, and
Greenleaf
,
J. F.
(
1984
). “
Measurement of the acoustic nonlinearity parameter B/A in human tissues by a thermodynamic method
,”
J. Acoust. Soc. Am.
76
,
1023
1029
.
48.
Sherar
,
M. D.
,
Trachtenberg
,
J.
,
Davidson
,
S. R. H.
, and
Gertner
,
M. R.
(
2004
). “
Interstitial microwave thermal therapy and its application to the treatment of recurrent prostate cancer
,”
Int. J. Hyperthermia
20
,
757
768
.
49.
Soneson
,
J. E.
, and
Myers
,
M. R.
(
2010
). “
Thresholds for nonlinear effects in high-intensity focused ultrasound propagation and tissue heating
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
57
,
2450
2459
.
50.
Techavipoo
,
U.
,
Varghese
,
T.
,
Chen
,
Q.
,
Stiles
,
T. A.
,
Zagzebski
,
J. A.
, and
Frank
,
G. R.
(
2004
). “
Temperature dependence of ultrasonic propagation speed and attenuation in excised canine liver tissue measured using transmitted and reflected pulses
,”
J. Acoust. Soc. Am.
115
,
2859
2865
.
51.
van Dongen
,
K. W. A.
, and
Verweij
,
M. D.
(
2011
). “
A feasibility study for non-invasive thermometry using non-linear ultrasound
,”
Int. J. Hyperth.
27
,
612
624
.
52.
Wear
,
K. A.
,
Stiles
,
T. A.
,
Frank
,
G. R.
,
Madsen
,
E. L.
,
Cheng
,
F.
,
Feleppa
,
E. J.
,
Hall
,
C. S.
,
Kim
,
B. S.
,
Lee
,
P.
,
O'Brien
,
W. D.
, Jr.,
Oelze
,
M. L.
,
Raju
,
B. I.
,
Shung
,
K. K.
,
Wilson
,
T. A.
, and
Yuan
,
J. R.
(
2005
). “
Interlaboratory comparison of ultrasonic backscatter coefficient measurements from 2 to 9 MHz
,”
J. Ultrasound Med.
24
,
1235
1250
.
53.
Wells
,
P. N. T.
, and
Liang
,
H.-D.
(
2011
). “
Medical ultrasound: Imaging of soft tissue strain and elasticity
,”
J. R. Soc. Interface
8
,
1521
1549
.
54.
Worthington
,
A.
, and
Sherar
,
M.
(
2001
). “
Changes in ultrasound properties of porcine kidney tissue during heating
,”
Ultrasound Med. Biol.
27
,
673
682
.
55.
Wu
,
F.
,
Wang
,
Z.-B.
,
Chen
,
W.-Z.
,
Zou
,
J.-Z.
,
Bai
,
J.
,
Zhu
,
H.
,
Li
,
K. Q.
,
Xie
,
F. L.
,
Jin
,
C. B.
,
Su
,
H. B.
, and
Gao
,
G. W.
(
2004
). “
Extracorporeal focused ultrasound surgery for treatment of human solid carcinomas: Early Chinese clinical experience
,”
Ultrasound Med. Biol.
30
,
245
260
.
56.
Zhang
,
M.
,
Castaneda
,
B.
,
Wu
,
Z.
,
Nigwekar
,
P.
,
Joseph
,
J. V.
,
Rubens
,
D. J.
, and
Parker
,
K. J.
(
2007
). “
Congruence of imaging estimators and mechanical measurements of viscoelastic properties of soft tissues
,”
Ultrasound Med. Biol.
33
,
1617
1631
.
You do not currently have access to this content.