Humpback whales can generate intricate bubbly regions, called bubble nets, via blowholes. Humpback whales appear to exploit these bubble nets for feeding via loud vocalizations. A fully-coupled phase-averaging approach is used to model the flow, bubble dynamics, and corresponding acoustics. A previously hypothesized waveguiding mechanism is assessed for varying acoustic frequencies and net void fractions. Reflections within the bubbly region result in observable waveguiding for only a small range of flow parameters. A configuration of multiple whales surrounding and vocalizing towards an annular bubble net is also analyzed. For a range of flow parameters, the bubble net keeps its core region substantially quieter than the exterior. This approach appears more viable, though it relies upon the cooperation of multiple whales. A spiral bubble net configuration that circumvents this requirement is also investigated. The acoustic wave behaviors in the spiral interior vary qualitatively with the vocalization frequency and net void fraction. The competing effects of vocalization guiding and acoustic attenuation are quantified. Low void fraction cases allow low-frequency waves to partially escape the spiral region, with the remaining vocalizations still exciting the net interior. Higher void fraction nets appear preferable, guiding even low-frequency vocalizations while still maintaining a quiet net interior.

1.
A.
Ingebrigtsen
, “
Whales caught in the North Atlantic and other seas
,”
Int. Council Explor. Sea, Rapp. P.-V. Réun
56
,
1
26
(
1929
).
2.
J. H. W.
Hain
,
G. R.
Carter
,
S. D.
Kraus
,
C. A.
Mayo
, and
H. E.
Winn
, “
Feeding behavior of the humpback whale, Megaptera novaeangliae, in the western North Atlantic
,”
Fishery Bull.
8
(
2
),
259
268
(
1982
).
3.
C.
Jurasz
and
V.
Jurasz
, “
Feeding modes of the hupmback whale, Megaptera novaeangliae, in southeastern Alaska
,
” Sci. Rep. Whales Res. Inst.
31
,
69
83
(
1979
).
4.
F. E.
Fish
and
J. M.
Battle
, “
Hydrodynamic design of the humpback whale flipper
,”
J. Morphol.
225
,
51
60
(
1995
).
5.
T. G.
Leighton
, “
From seas to surgeries, from babbling brooks to baby scans: The acoustics of gas bubbles in liquids
,”
Int. J. Mod. Phys. B
18
(
25
),
3267
3314
(
2004
).
6.
T. G.
Leighton
,
D. C.
Finfer
, and
P. R.
White
, “
Cavitation and cetacean
,”
Revista de Acustica
38
(
3/4
),
37
81
(
2007
).
7.
T. G.
Leighton
and
P. R.
White
, “
Dolphin-inspired target detection for sonar and radar
,”
Arch. Acoust.
38
(
3
),
319
332
(
2014
).
8.
F. A.
Sharpe
and
L. M.
Dill
, “
The behaviour of Pacific herring schools in response to artifical humpback whale bubbles
,”
Can. J. Zool.
75
,
725
730
(
1997
).
9.
E.
Valsecchi
,
P.
Corkeron
, and
W.
Amos
, “
Social structure in migrating humpback whales (Megaptera novaeangliae)
,”
Mol. Ecol.
11
(
3
),
507
513
(
2002
).
10.
C. G.
D'Vincent
,
R. M.
Nilson
, and
R. E.
Hanna
, “
Vocalization and coordinated feeding behavior of the humpback whale in southeastern Alaska
,”
Sci. Rep. Whales Res. Inst.
36
,
41
47
(
1985
).
11.
E.
Mercado
and
L. N.
Frazer
, “
Humpback whale song or humpback whale sonar? A reply to Au et al
.,”
IEEE J. Ocean. Eng.
26
(
3
),
406
415
(
2001
).
12.
P. O.
Thompson
,
W. C.
Cummings
, and
S. J.
Ha
, “
Sounds, source levels, and associated behavior of humpback whales, Southeast Alaska
,”
J. Acoust. Soc. Am.
80
(
3
),
735
740
(
1986
).
13.
B.
Würsig
,
C. R.
Greene
, Jr.
, and
T. A.
Jefferson
, “
Development of an air bubble curtain to reduce underwater noise of percussive piling
,”
Mar. Environ. Res.
49
(
1
),
79
93
(
2000
).
14.
S. N.
Domenico
, “
Acoustic wave propagation in air-bubble curtains in water—Part I: History and theory
,”
Geophysics
47
,
345
353
(
1982
).
15.
T. G.
Leighton
, “
Nonlinear bubble dynamics and the effects on propagation through near-surface bubble layers
,” in
AIP Conference Proceedings
, edited by
W. K. M. B.
Porter
and
M.
Siderius
(
American Institute of Physics
Melville, New York
,
2004
), Vol.
728
, p.
180
.
16.
T. G.
Leighton
,
S. D.
Richards
, and
P. R.
White
, “
Trapped within a ‘wall of sound
,’ ”
Acoust. Bull.
29
,
24
29
(
2004
).
17.
L. A.
Finley
,
S.
Nicol
, and
D. L.
MacMillan
, “
The effectiveness of a bubble curtain for preventing physical damage to antarctic krill in captivity
,”
Mar. Freshw. Behav. Phys.
36
(
4
),
285
293
(
2003
).
18.
T. G.
Leighton
,
D.
Finfer
,
E.
Grover
, and
P. R.
White
, “
An acoustical hypothesis for the spiral bubble nets of humpback whales and the implications for whale feeding
,”
Acoust. Bull.
22
,
17
21
(
2007
).
19.
T. G.
Leighton
,
D. C.
Finfer
,
E. J.
Grover
, and
P. R.
White
, “
Spiral bubble nets of humpback whales: An acoustic mechanism
,” in
Proceedings of the 2nd International Conference & Exhibition on Underwater Acoustic Measurements: Technologies and Results
, Heraklion, Greece (June 25–29,
2007
), pp.
583
588
.
20.
D.
Wiley
,
C.
Ware
,
A.
Bocconcelli
,
D.
Cholewiak
,
A.
Friedlaender
,
M.
Thompson
, and
M.
Weinrich
, “
Underwater components of humpback whale bubble-net feeding behaviour
,”
Behaviour
148
(
5–6
),
575
602
(
2011
).
21.
E.
Mercado
and
L. N.
Frazer
, “
Environmental constrains on sound transmission by humpback whales
,”
J. Acoust. Soc. Am.
106
(
5
),
3004
3016
(
1999
).
22.
K. W.
Commander
and
A.
Prosperetti
, “
Linear pressure waves in bubbly liquids: Comparison between theory and experiments
,”
J. Acoust. Soc. Am.
85
,
732
746
(
1989
).
23.
D. Z.
Zhang
and
A.
Prosperetti
, “
Ensemble phase-averaged equations for bubbly flows
,”
Phys. Fluids
6
,
2956
(
1994
).
24.
K.
Ando
, “
Effects of polydispersity in bubbly flows
,” Ph.D. thesis,
California Institute of Technology
,
Pasadena, CA
(
2010
).
25.
S. H.
Bryngelson
,
K.
Schmidmayer
, and
T.
Colonius
, “
A quantitative comparison of phase-averaged models for bubbly, cavitating flows
,”
Int. J. Mult. Flow
115
,
137
143
(
2019
).
26.
R.
Menikoff
and
B. J.
Plohr
, “
The Riemann problem for fluid-flow of real materials
,”
Rev. Mod. Phys.
61
(
1
),
75
130
(
1989
).
27.
J. B.
Keller
and
M.
Miksis
, “
Bubble oscillations of large amplitude
,”
J. Acoust. Soc. Am.
68
,
628
633
(
1980
).
28.
A.
Preston
,
T.
Colonius
, and
C. E.
Brennen
, “
A reduced-order model of diffusion effects on the dynamics of bubbles
,”
Phys. Fluids
19
,
123302
(
2007
).
29.
V.
Coralic
and
T.
Colonius
, “
Finite-volume WENO scheme for viscous compressible multicomponent flow problems
,”
J. Comput. Phys.
274
,
95
121
(
2014
).
30.
S. H.
Bryngelson
,
K.
Schmidmayer
,
V.
Coralic
,
J. C.
Meng
,
K.
Maeda
, and
T.
Colonius
, “
MFC, an open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver
,” arXiv:1907.10512 (
2019
).
31.
E.
Toro
,
M.
Spruce
, and
W.
Speares
, “
Restoration of the contact surface in the HLL-Riemann solver
,”
Shock waves
4
(
1
),
25
34
(
1994
).
32.
S.
Gottlieb
and
C.-W.
Shu
, “
Total variation diminishing Runge–Kutta schemes
,”
Math. Comput.
67
(
221
),
73
85
(
1998
).
33.
T. J.
O'Hern
,
L.
d'Agostino
, and
A. J.
Acosta
, “
Comparison of holographic and coulter counter measurements of cavitation nuclei in the ocean
,”
J. Fluids Eng.
110
,
200
207
(
1988
).
34.
Duke Marine Lab
, “
Highlights from Antarctica research
,” https://sites.nicholas.duke.edu/uas/highlights-from-antarctica-research (Last viewed 2/10/2020).
35.
Evadb
, “
Whales bubble net feeding
,” https://commons.wikimedia.org/wiki/File:Whales_Bubble_Net_Feeding.jpg (Last viewed 2/10/2020).
You do not currently have access to this content.