Zebrafish are a popular vertebrate animal model for biomedical research including investigations of the auditory system. Responses to acoustic stimulation have been a challenge to carefully measure in zebrafish. Here, the authors have developed a procedure for measuring hearing sensitivity in adult zebrafish using an appetitive automated Go/No Go task. In this task, a trial is initiated when a fish passes through an observing gate. In a sound trial, the fish is reinforced by an automated food delivery system when it enters the reinforcement compartment. If the fish enters the reinforcement compartment during a no-sound trial, a timeout is implemented. Zebrafish successfully learned this task in a median of about ten days of daily training. Zebrafish were most sensitive at a frequency of 800 Hz, which corresponds well with sensitivity reported from physiological methods. As far as the authors know, the present study is the first to provide hearing thresholds for zebrafish using a conventional combination of operant conditioning and psychophysical procedures. This could open the door to other kinds of tests using acoustic stimuli as are commonly conducted in many other laboratory animals.

1.
Brown
,
P. L.
, and
Jenkins
,
H. M.
(
1968
). “
Auto-shaping of the pigeon's key-peck
,”
J. Exp. Anal. Behav.
11
,
1
8
.
2.
Cervi
,
A. L.
,
Poling
,
K. R.
, and
Higgs
,
D. M.
(
2012
). “
Behavioral measure of frequency detection and discrimination in the zebrafish, Danio rerio
,”
Zebrafish
9
,
1
7
.
3.
Dooling
,
R. J.
, and
Okanoya
,
K.
(
1995
). “
The method of constant stimuli in testing auditory sensitivity in small birds
,” in
Methods in Comparative Psychoacoustics
, edited by
G. M.
Klump
,
R. J.
Dooling
,
R. R.
Fay
, and
W. C.
Stebbins
(
Birkhäuser
Basel, Basel
), pp.
161
169
.
4.
Fleshler
,
M.
, and
Hoffman
,
H. S.
(
1962
). “
A progression for generating variable-interval schedules
,”
J. Exp. Anal. Behav.
5
,
529
530
.
5.
Higgs
,
D. M.
,
Souza
,
M. J.
,
Wilkins
,
H. R.
,
Presson
,
J. C.
, and
Popper
,
A. N.
(
2002
). “
Age- and size-related changes in the inner ear and hearing ability of the adult zebrafish (Danio rerio)
,”
J. Assoc. Res. Otolaryngol.
3
,
174
184
.
6.
Howe
,
K.
,
Clark
,
M. D.
,
Torroja
,
C. F.
,
Torrance
,
J.
,
Berthelot
,
C.
,
Muffato
,
M.
,
Collins
,
J. E.
,
Humphray
,
S.
,
McLaren
,
K.
,
Matthews
,
L.
,
McLaren
,
S.
,
Sealy
,
I.
,
Caccamo
,
M.
,
Churcher
,
C.
,
Scott
,
C.
,
Barrett
,
J. C.
,
Koch
,
R.
,
Rauch
,
G.-J.
,
White
,
S.
,
Chow
,
W.
,
Kilian
,
B.
,
Quintais
,
L. T.
,
Guerra-Assunção
,
J. A.
,
Zhou
,
Y.
,
Gu
,
Y.
,
Yen
,
J.
,
Vogel
,
J.-H.
,
Eyre
,
T.
,
Redmond
,
S.
,
Banerjee
,
R.
,
Chi
,
J.
,
Fu
,
B.
,
Langley
,
E.
,
Maguire
,
S. F.
,
Laird
,
G. K.
,
Lloyd
,
D.
,
Kenyon
,
E.
,
Donaldson
,
S.
,
Sehra
,
H.
,
Almeida-King
,
J.
,
Loveland
,
J.
,
Trevanion
,
S.
,
Jones
,
M.
,
Quail
,
M.
,
Willey
,
D.
,
Hunt
,
A.
,
Burton
,
J.
,
Sims
,
S.
,
McLay
,
K.
,
Plumb
,
B.
,
Davis
,
J.
,
Clee
,
C.
,
Oliver
,
K.
,
Clark
,
R.
,
Riddle
,
C.
,
Elliott
,
D.
,
Threadgold
,
G.
,
Harden
,
G.
,
Ware
,
D.
,
Begum
,
S.
,
Mortimore
,
B.
,
Kerry
,
G.
,
Heath
,
P.
,
Phillimore
,
B.
,
Tracey
,
A.
,
Corby
,
N.
,
Dunn
,
M.
,
Johnson
,
C.
,
Wood
,
J.
,
Clark
,
S.
,
Pelan
,
S.
,
Griffiths
,
G.
,
Smith
,
M.
,
Glithero
,
R.
,
Howden
,
P.
,
Barker
,
N.
,
Lloyd
,
C.
,
Stevens
,
C.
,
Harley
,
J.
,
Holt
,
K.
,
Panagiotidis
,
G.
,
Lovell
,
J.
,
Beasley
,
H.
,
Henderson
,
C.
,
Gordon
,
D.
,
Auger
,
K.
,
Wright
,
D.
,
Collins
,
J.
,
Raisen
,
C.
,
Dyer
,
L.
,
Leung
,
K.
,
Robertson
,
L.
,
Ambridge
,
K.
,
Leongamornlert
,
D.
,
McGuire
,
S.
,
Gilderthorp
,
R.
,
Griffiths
,
C.
,
Manthravadi
,
D.
,
Nichol
,
S.
,
Barker
,
G.
,
Whitehead
,
S.
,
Kay
,
M.
,
Brown
,
J.
,
Murnane
,
C.
,
Gray
,
E.
,
Humphries
,
M.
,
Sycamore
,
N.
,
Barker
,
D.
,
Saunders
,
D.
,
Wallis
,
J.
,
Babbage
,
A.
,
Hammond
,
S.
,
Mashreghi-Mohammadi
,
M.
,
Barr
,
L.
,
Martin
,
S.
,
Wray
,
P.
,
Ellington
,
A.
,
Matthews
,
N.
,
Ellwood
,
M.
,
Woodmansey
,
R.
,
Clark
,
G.
,
Cooper
,
J. D.
,
Tromans
,
A.
,
Grafham
,
D.
,
Skuce
,
C.
,
Pandian
,
R.
,
Andrews
,
R.
,
Harrison
,
E.
,
Kimberley
,
A.
,
Garnett
,
J.
,
Fosker
,
N.
,
Hall
,
R.
,
Garner
,
P.
,
Kelly
,
D.
,
Bird
,
C.
,
Palmer
,
S.
,
Gehring
,
I.
,
Berger
,
A.
,
Dooley
,
C. M.
,
Ersan-Ürün
,
Z.
,
Eser
,
C.
,
Geiger
,
H.
,
Geisler
,
M.
,
Karotki
,
L.
,
Kirn
,
A.
,
Konantz
,
J.
,
Konantz
,
M.
,
Oberländer
,
M.
,
Rudolph-Geiger
,
S.
,
Teucke
,
M.
,
Lanz
,
C.
,
Raddatz
,
G.
,
Osoegawa
,
K.
,
Zhu
,
B.
,
Rapp
,
A.
,
Widaa
,
S.
,
Langford
,
C.
,
Yang
,
F.
,
Schuster
,
S. C.
,
Carter
,
N. P.
,
Harrow
,
J.
,
Ning
,
Z.
,
Herrero
,
J.
,
Searle
,
S. M. J.
,
Enright
,
A.
,
Geisler
,
R.
,
Plasterk
,
R. H. A.
,
Lee
,
C.
,
Westerfield
,
M.
,
de Jong
,
P. J.
,
Zon
,
L. I.
,
Postlethwait
,
J. H.
,
Nüsslein-Volhard
,
C.
,
Hubbard
,
T. J. P.
,
Crollius
,
H. R.
,
Rogers
,
J.
, and
Stemple
,
D. L.
(
2013
). “
The zebrafish reference genome sequence and its relationship to the human genome
,”
Nature
496
,
498
503
.
7.
Kuroda
,
T.
,
Mizutani
,
Y.
,
Cancado
,
C. R. X.
, and
Podlesnik
,
C. A.
(
2017a
). “
Operant models of relapse in zebrafish (Danio rerio): Resurgence, renewal, and reinstatement
,”
Behav. Brain Res.
335
,
215
222
.
8.
Kuroda
,
T.
,
Mizutani
,
Y.
,
Cancado
,
C. R. X.
, and
Podlesnik
,
C. A.
(
2017b
). “
Reversal learning and resurgence of operant behavior in zebrafish (Danio rerio)
,”
Behav. Process.
142
,
79
83
.
9.
Ladich
,
F.
, and
Fay
,
R. R.
(
2013
). “
Auditory evoked potential audiometry in fish
,”
Rev. Fish Biol. Fish.
23
,
317
364
.
10.
Manabe
,
K.
,
Dooling
,
R. J.
, and
Takaku
,
S.
(
2013a
). “
An automated device for appetitive conditioning in zebrafish (Danio rerio
),”
Zebrafish
10
,
518
523
.
11.
Manabe
,
K.
,
Dooling
,
R. J.
, and
Takaku
,
S.
(
2013b
). “
Differential reinforcement of an approach response in zebrafish (Danio rerio)
,”
Behav. Process.
98
,
106
111
.
12.
Monroe
,
J. D.
,
Manning
,
D. P.
,
Uribe
,
P. M.
,
Bhandiwad
,
A.
,
Sisneros
,
J. A.
,
Smith
,
M. E.
, and
Coffin
,
A. B.
(
2016
). “
Hearing sensitivity differs between zebrafish lines used in auditory research
,”
Hear. Res.
341
,
220
231
.
13.
Norton
,
W.
, and
Bally-Cuif
,
L.
(
2010
). “
Adult zebrafish as a model organism for behavioural genetics
,”
BMC Neurosci.
11
,
90
.
14.
Parker
,
M. O.
,
Millington
,
M. E.
,
Combe
,
F. J.
, and
Brennan
,
C. H.
(
2012
). “
Development and implementation of a three-choice serial reaction time task for zebrafish (Danio rerio)
,”
Behav. Brain Res.
227
,
73
80
.
15.
Pollack
,
I.
, and
Norman
,
D. A.
(
1964
). “
A non-parametric analysis of recognition experiments
,”
Psychon. Sci.
1
,
125
126
.
16.
Popper
,
A. N.
, and
Hawkins
,
A. D.
(
2018
). “
The importance of particle motion to fishes and invertebrates
,”
J. Acoust. Soc. Am.
143
,
470
488
.
17.
Popper
,
A. N.
,
Hawkins
,
A. D.
,
Sand
,
O.
, and
Sisneros
,
J. A.
(
2019
). “
Examining the hearing abilities of fishes
,”
J. Acoust. Soc. Am.
146
,
948
955
.
18.
Rogers
,
P. H.
,
Hawkins
,
A. D.
,
Popper
,
A. N.
,
Fay
,
R. R.
, and
Gray
,
M. D.
(
2016
). “
Parvulescu revisited: Small tank acoustics for bioacousticians
,” in
The Effects of Noise on Aquatic Life II
(
Springer
,
New York
), pp.
933
941
.
19.
Sabet
,
S. S.
,
Wesdorp
,
K.
,
van Dooren
,
D.
, and
Slabbekoorn
,
H.
(
2016
). “
Sound affects behavior of captive zebrafish: Always consider the potential for acoustic effects on your laboratory tests
,” in
Proceedings of Meetings on Acoustics 4ENAL (ASA)
, p.
010010
.
20.
Sison
,
M.
, and
Gerlai
,
R.
(
2010
). “
Associative learning in zebrafish (Danio rerio) in the plus maze
,”
Behav. Brain Res.
207
,
99
104
.
21.
Valente
,
A.
,
Huang
,
K. H.
,
Portugues
,
R.
, and
Engert
,
F.
(
2012
). “
Ontogeny of classical and operant learning behaviors in zebrafish
,”
Learn. Mem.
19
,
170
177
.
22.
Whitfield
,
T. T.
(
2002
). “
Zebrafish as a model for hearing and deafness
,”
J. Neurobiol.
53
,
157
171
.
You do not currently have access to this content.