Speech perception requires accommodation of a wide range of acoustic variability across talkers. A classic example is the perception of “sh” and “s” fricative sounds, which are categorized according to spectral details of the consonant itself, and also by the context of the voice producing it. Because women's and men's voices occupy different frequency ranges, a listener is required to make a corresponding adjustment of acoustic-phonetic category space for these phonemes when hearing different talkers. This pattern is commonplace in everyday speech communication, and yet might not be captured in accuracy scores for whole words, especially when word lists are spoken by a single talker. Phonetic accommodation for fricatives “s” and “sh” was measured in 20 cochlear implant (CI) users and in a variety of vocoder simulations, including those with noise carriers with and without peak picking, simulated spread of excitation, and pulsatile carriers. CI listeners showed strong phonetic accommodation as a group. Each vocoder produced phonetic accommodation except the 8-channel noise vocoder, despite its historically good match with CI users in word intelligibility. Phonetic accommodation is largely independent of linguistic factors and thus might offer information complementary to speech intelligibility tests which are partially affected by language processing.

1.
Aronoff
,
J.
, and
Landsberger
,
D.
(
2013
). “
The development of a modified spectral ripple test
,”
J. Acoust. Soc. Am.
134
,
EL217
EL222
.
2.
Aronoff
,
J.
,
Shayman
,
C.
,
Prasad
,
A.
,
Suneel
,
D.
, and
Stelmach
,
J.
(
2015
). “
Unilateral spectral and temporal compression reduces binaural fusion for normal hearing listeners with cochlear implant simulations
,”
Hear. Res.
320
,
24
29
.
3.
Assmann
,
P.
(
1996
). “
Modeling the perception of concurrent vowels: Role of formant transitions
,”
J. Acoust. Soc. Am.
100
,
1141
1152
.
4.
Başkent
,
D.
,
Clarke
,
J.
,
Pals
,
C.
,
Benard
,
M.
,
Bhargava
,
P.
,
Saija
,
J.
,
Sarampalis
,
A.
,
Wagner
,
A.
, and
Gaudrain
,
E.
(
2016
). “
Cognitive compensation of speech perception with hearing impairment, cochlear implants, and aging: How and to what degree can it be achieved?
,”
Trends Hear.
20
,
1
16
.
5.
Başkent
,
D.
, and
Shannon
,
R.
(
2005
). “
Interactions between cochlear implant electrode insertion depth and frequency-place mapping
,”
J. Acoust. Soc. Am.
117
,
1405
1416
.
6.
Bates
,
D.
,
Maechler
,
M.
,
Bolker
,
B.
,
Walker
,
S.
,
Christensen
,
R.
,
Singmann
,
H.
,
Dai
,
B.
,
Grothendieck
,
G.
, and
Green
,
P.
(
2016
). “
Lme4: Linear mixed-effects models using ‘Eigen’ and S4,'
” R Package Version 1.1-7, http://CRAN.R-project.org/package=lme4 (Last viewed January 14, 2020).
7.
Bierer
,
J. A.
(
2007
). “
Threshold and channel interaction in cochlear implant users: Evaluation of the tripolar electrode configuration
,”
J. Acoust. Soc. Am.
121
,
1642
1653
.
8.
Bingabr
,
M.
,
Espinoza-Varas
,
B.
, and
Loizou
,
P.
(
2008
). “
Simulating the effect of spread of excitation in cochlear implants
,”
Hear. Res.
241
,
73
79
.
9.
Blamey
,
P.
,
Artieres
,
F.
,
Başkent
,
D.
,
Bergeron
,
F.
,
Beynon
,
A.
,
Burke
,
E.
,
Diller
,
N.
,
Dowell
,
R.
,
Fraysse
,
B.
,
Gallégo
,
S.
,
Govaerts
,
P.
,
Green
,
K.
,
Huber
,
A.
,
Kleine-Punte
,
A.
,
Maat
,
B.
,
Marx
,
M.
,
Mawman
,
D.
,
Mosnier
,
I.
,
O'Connor
,
A.
,
O'Leary
,
S.
,
Rousset
,
A.
,
Schauwers
,
K.
,
Skarzynski
,
H.
,
Skarzynski
,
P.
,
Sterkers
,
O.
,
Terranti
,
A.
,
Truy
,
E.
,
Van de Heyning
,
P.
,
Venail
,
F.
,
Vincent
,
C.
, and
Lazard
,
D.
(
2013
). “
Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants: An update with 2251 patients
,”
Audiol. Neurotol.
18
,
36
47
.
10.
Blumstein
,
S.
, and
Stevens
,
K.
(
1979
). “
Acoustic invariance in speech production: Evidence from measurements of the spectral characteristics of stop consonants
,”
J. Acoust. Soc. Am.
66
,
1001
1017
.
11.
Boersma
,
P.
, and
Weenink
,
D.
(
2011
). “
Praat: Doing phonetics by computer (version 5.3.16), [computer program]
,” http://www.praat.org/ (Last viewed January 14, 2020).
12.
Chatterjee
,
M.
, and
Peng
,
S.-C.
(
2008
). “
Processing F0 with cochlear implants: Modulation frequency discrimination and speech intonation recognition
,”
Hear. Res.
235
,
143
156
.
13.
Crew
,
J.
,
Galvin
,
J.
, and
Fu
,
Q.-J.
(
2012
). “
Channel interaction limits melodic pitch perception in simulated cochlear implants
,”
J. Acoust. Soc. Am.
132
,
429
435
.
14.
Deeks
,
J. M.
, and
Carlyon
,
R.
(
2004
). “
Simulations of cochlear implant hearing using filtered harmonic complexes: Implications for concurrent sound segregation
,”
J. Acoust. Soc. Am.
115
,
1736
1746
.
15.
DeVries
,
L.
,
Scheperle
,
R.
, and
Bierer
,
J. A.
(
2016
). “
Assessing the electrode-neuron interface with the electrically evoked compound action potential, electrode position, and behavioral thresholds
,”
J. Assoc. Res. Otolaryngol.
17
,
237
252
.
16.
DiNino
,
M.
,
Wright
,
R.
,
Winn
,
M.
, and
Bierer
,
J.
(
2016
). “
Vowel and consonant confusion patterns resulting from spectral manipulations in vocoded stimuli designed to replicate poor electrode-neuron interfaces in cochlear implants
,”
J. Acoust. Soc. Am.
140
,
4404
4418
.
17.
Dorman
,
M.
,
Loizou
,
P.
, and
Rainey
,
D.
(
1997
). “
Simulating the effect of cochlear-implant electrode insertion depth on speech understanding
,”
J. Acoust. Soc. Am.
102
,
2993
2996
.
18.
Friesen
,
L.
,
Shannon
,
R. V.
,
Başkent
,
D.
, and
Wang
,
X.
(
2001
). “
Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants
,”
J. Acoust. Soc. Am.
110
,
1150
1163
.
19.
Fu
,
Q.-J.
,
Chinchilla
,
S.
, and
Galvin
,
J.
(
2004
). “
The role of spectral and temporal cues in voice gender discrimination by normal-hearing listeners and cochlear implant users
,”
J. Assoc. Res. Otolaryngol.
5
,
253
260
.
20.
Fu
,
Q.-J.
, and
Nogaki
,
G.
(
2004
). “
Noise susceptibility of cochlear implant users: The role of spectral resolution and smearing
,”
J. Assoc. Res. Otolaryngol.
6
,
17
27
.
21.
Fuller
,
C.
,
Gaudrain
,
E.
,
Clarke
,
J.
,
Galvin
,
J.
,
Fu
,
Q.-J.
,
Free
,
R.
, and
Başkent
,
D.
(
2014
). “
Gender categorization is abnormal in cochlear implant users
,”
J. Assoc. Res. Otolaryngol.
15
,
1037
1048
.
22.
Gaudrain
,
E.
, and
Başkent
,
D.
(
2018
). “
Discrimination of voice pitch and vocal-tract length in cochlear implant users
,”
Ear Hear.
39
,
226
237
.
23.
Gianakas
,
S.
, and
Winn
,
M.
(
2019
). “
Perception of coarticulation in listeners with cochlear implants and other spectrally degraded conditions
,”
J. Acoust. Soc. Am.
141
,
3839
.
24.
Grange
,
J.
,
Culling
,
J.
, and
Harris
,
N.
(
2017
). “
Cochlear implant simulator with independent representation of the full spiral ganglion
,”
J. Acoust. Soc. Am.
142
,
EL484
EL489
.
25.
Greenwood
,
D.
(
1990
). “
A cochlear frequency-position function for several species—29 years later
,”
J. Acoust. Soc. Am.
87
,
2592
2605
.
26.
Holden
,
L.
,
Finley
,
C.
,
Firszt
,
J.
,
Holden
,
T.
,
Brenner
,
C.
,
Potts
,
L.
,
Gotter
,
B.
,
Vanderhoof
,
S.
,
Mispagel
,
K.
,
Heydebrand
,
G.
, and
Skinner
,
M.
(
2013
). “
Factors affecting open-set word recognition in adults with cochlear implants
,”
Ear Hear.
34
,
342
360
.
27.
Holt
,
L.
, and
Lotto
,
A.
(
2010
). “
Speech perception as categorization
,”
Attn. Percept. Psychophys.
72
,
1218
1227
.
28.
Johnson
,
K.
,
Strand
,
E.
, and
D'Imperio
,
M.
(
1999
). “
Auditory-visual integration of talker gender in vowel perception
,”
J. Phon.
27
,
359
384
.
29.
Jones
,
G.
,
Won
,
J. H.
,
Drennan
,
W.
, and
Rubinstein
,
J.
(
2013
). “
Relationship between channel interaction and spectral-ripple discrimination in cochlear implant users
,”
J. Acoust. Soc. Am.
133
,
425
433
.
30.
Jongman
,
A.
(
1989
). “
Duration of frication noise required for identification of English fricatives
,”
J. Acoust. Soc. Am.
85
(
4
),
1718
1725
.
31.
Jongman
,
A.
,
Wayland
,
R.
, and
Wong
,
S.
(
2000
). “
Acoustic characteristics of English fricatives
,”
J. Acoust. Soc. Am.
108
,
1252
1263
.
32.
Kovačić
,
D.
, and
Balaban
,
E.
(
2009
). “
Voice gender perception by cochlear implantees
,”
J. Acoust. Soc. Am.
126
,
762
775
.
33.
Landsberger
,
D.
,
Padilla
,
M.
, and
Srinivasan
,
A.
(
2012
). “
Reducing current spread using current focusing in cochlear implant users
,”
Hear Res.
284
,
16
24
.
34.
Landsberger
,
D.
,
Svrakic
,
J.
, and
Svirsky
,
M.
(
2015
). “
The relationship between insertion angles, default frequency allocations, and spiral ganglion place pitch in cochlear implants
,”
Ear Hear.
36
,
e207
.
35.
Laneau
,
J.
,
Moonen
,
M.
, and
Wouters
,
J.
(
2006
). “
Factors affecting the use of noise-band vocoders as acoustic models for pitch perception in cochlear implants
,”
J. Acoust. Soc. Am.
119
,
491
506
.
36.
Litvak
,
L.
,
Spahr
,
A.
,
Saoji
,
A.
, and
Fridman
,
G.
(
2007
). “
Relationship between perception of spectral ripple and speech recognition in cochlear implant and vocoder listeners
,”
J. Acoust. Soc. Am.
122
,
982
991
.
37.
Mann
,
V.
, and
Repp
,
B.
(
1980
). “
Influence of vocalic context on perception of the /ʃ/–/s/distinction
,”
Percept. Psychophys.
28
,
213
228
.
38.
Maryn
,
Y.
,
Roy
,
N.
,
De Bodt
,
M.
,
Van Cauwenberge
,
P.
, and
Corthals
,
P.
(
2009
). “
Acoustic measurement of overall voice quality: A meta-analysis
,”
J. Acoust. Soc. Am.
126
,
2619
2634
.
39.
McMurray
,
B.
, and
Jongman
,
A.
(
2011
). “
What information is needed for speech categorization? Harnessing variability in the speech signal by integrating cues computed relative to expectations
,”
Psychol. Rev.
118
,
219
246
.
40.
Moberly
,
A.
,
Lowenstein
,
J.
, and
Nittrouer
,
S.
(
2015
). “
Word recognition variability with cochlear implants: ‘Perceptual attention’ versus ‘auditory sensitivity
,’ ”
Ear Hear.
37
,
14
26
.
41.
Munson
,
B.
,
Jefferson
,
S.
, and
McDonald
,
E.
(
2006
). “
The influence of perceived sexual orientation on fricative identification
,”
J. Acoust. Soc. Am.
119
,
2427
2437
.
42.
Oxenham
,
A.
, and
Kreft
,
H.
(
2014
). “
Speech perception in tones and noise via cochlear implants reveals influence of spectral resolution on temporal processing
,”
Trends Hear.
18
,
233121651455378
.
43.
Oxenham
,
A.
, and
Kreft
,
H.
(
2016
). “
Speech masking in normal and impaired hearing: Interactions between frequency selectivity and inherent temporal fluctuations in noise
,”
Adv. Exp. Med. Biol.
894
,
125
132
.
44.
Peterson
,
G.
, and
Lehiste
,
I.
(
1962
). “
Revised CNC list for auditory tests
,”
J. Speech Hear. Disord.
27
,
62
70
.
45.
Pals
,
C.
,
Sarampalis
,
A.
, and
Başkent
,
D.
(
2013
). “
Listening effort with cochlear implant simulations
,”
J. Speech Lang. Hear Res.
56
,
1075
1084
.
46.
Patro
,
C.
, and
Mendel
,
L.
(
2016
). “
Role of contextual cues on the perception of spectrally reduced interrupted speech
,”
J. Acoust. Soc. Am.
140
,
1336
1345
.
47.
R Core Team
(
2016
). “
R: A language and environment for statistical computing, software version 3.3.2
,”
R Foundation for Statistical Computing
,
Vienna, Austriam
, https://www.R-project.org/ (Last viewed January 14, 2020).
48.
Remez
,
R.
,
Rubin
,
P.
,
Pisoni
,
D.
, and
Carell
,
T.
(
1981
). “
Speech perception without traditional speech cues
,”
Science
212
,
947
950
.
49.
Saberi
,
K.
, and
Perrott
,
D.
(
1999
). “
Cognitive restoration of reversed speech
,”
Nature
398
,
760
761
.
50.
Shannon
,
R.
,
Fu
,
Q.-J.
, and
Galvin
,
J.
(
2004
). “
The number of spectral channels required for speech recognition depends on the difficulty of the listening situation
,”
Acta Otolargol.
552
,
50
54
.
51.
Shannon
,
R.
,
Zeng
,
F.-G.
,
Kamath
,
V.
,
Wygonski
,
J.
, and
Ekelid
,
M.
(
1995
). “
Speech recognition with primarily temporal cues
,”
Science
270
,
303
304
.
52.
Shannon
,
R.
,
Zeng
,
F.
, and
Wygonski
,
J.
(
1998
). “
Speech recognition with altered spectral distribution of envelope cues
,”
J. Acoust. Soc. Am.
104
,
2467
2476
.
53.
Skuk
,
V.
, and
Schweinberger
,
S.
(
2014
). “
Influences of fundamental frequency, formant frequencies, aperiodicity, and spectrum level on the perception of voice gender
,”
J. Speech Lang. Hear Res.
57
,
285
296
.
54.
Srinivasan
,
A.
,
Padilla
,
M.
,
Shannon
,
R.
, and
Landsberger
,
D.
(
2013
). “
Improving speech perception in noise with current focusing in cochlear implant users
,”
Hear. Res.
299
,
29
36
.
55.
Stafford
,
R.
,
Stafford
,
J.
,
Wells
,
J.
,
Loizou
,
P.
, and
Keller
,
M.
(
2014
). “
Vocoder simulations of highly focused cochlear stimulation with limited dynamic range and discriminable steps
,”
Ear Hear.
35
,
262
270
.
56.
Stilp
,
C.
(
2017
). “
Acoustic context alters vowel categorization in perception of noise-vocoded speech
,”
J. Assoc. Res. Otolaryngol.
18
,
465
481
.
57.
Stilp
,
C.
,
Anderson
,
P.
, and
Winn
,
M.
(
2015
). “
Predicting contrast effects following reliable spectral properties in speech perception
,”
J. Acoust. Soc. Am.
137
,
3466
3476
.
58.
Williges
,
B.
,
Dietz
,
M.
,
Hohmann
,
V.
, and
Jürgens
,
T.
(
2015
). “
Spatial release from masking in simulated cochlear implant users with and without access to low-frequency acoustic hearing
,”
Trends Hear.
19
,
1
14
.
59.
Winn
,
M.
,
Chatterjee
,
M.
, and
Idsardi
,
W.
(
2012
). “
The use of acoustic cues for phonetic identification: Effects of spectral degradation and electric hearing
,”
J. Acoust. Soc. Am.
131
,
1465
1479
.
60.
Winn
,
M.
,
Rhone
,
A.
,
Chatterjee
,
M.
, and
Idsardi
,
W.
(
2013
). “
Auditory and visual context effects in phonetic perception by normal-hearing listeners and listeners with cochlear implants
,”
Front. Psychol.
4
,
824
.
61.
Winn
,
M.
, and
Litovsky
,
R.
(
2015
). “
Using speech sounds to test functional spectral resolution in listeners with cochlear implants
,”
J. Acoust. Soc. Am.
137
,
1430
1442
.
62.
Winn
,
M.
, and
Moore
,
A.
(
2019
). “
Backwards and indirect context effects in accommodating gender differences in speech
,” in
Proceedings of the Podium Presentation at the Acoustical Society of America Spring Meeting
, May 13–17,
Louisville, KY
.
63.
Winn
,
M.
,
Won
,
J. H.
, and
Moon
,
I. J.
(
2016
). “
Assessment of spectral and temporal resolution in cochlear implant users using psychoacoustic discrimination and speech cue categorization
,”
Ear Hear.
37
,
e377
e390
.
64.
Won
,
J. H.
,
Drennan
,
W.
, and
Rubinstein
,
J.
(
2007
). “
Spectral-ripple resolution correlates with speech reception in noise in cochlear implant users
,”
J. Assoc. Res. Otolaryngol.
8
,
384
392
.
65.
Xu
,
L.
,
Thompson
,
C.
, and
Pfingst
,
B.
(
2005
). “
Relative contributions of spectral and temporal cues for phoneme recognition
,”
J. Acoust. Soc. Am.
117
,
3255
3267
.
66.
Zhou
,
N.
,
Xu
,
L.
, and
Lee
,
C.-Y.
(
2010
). “
The effects of frequency-place shift on consonant confusion in cochlear implant simulations
,”
J. Acoust. Soc. Am.
128
,
401
409
.

Supplementary Material

You do not currently have access to this content.