The reconstruction of sound sources by using inverse methods is known to be prone to estimation errors due to measurement noise, model mismatch, and poor conditioning of the inverse problem. This paper introduces a solution to map the estimation errors together with the reconstructed sound sources. From a Bayesian perspective, it initializes a Gibbs sampler with the Bayesian focusing method. The proposed Gibbs sampler is shown to converge within a few iterations, which makes it realistic for practical purposes. It also turns out to be very flexible in various scenarios. One peculiarity is the capability to directly operate on the cross-spectral matrix. Another one is to easily accommodate sparse priors. Eventually, it can also account for uncertainties in the microphone positions, which reinforces the regularization of the inverse problem.

1.
P. C.
Hansen
,
Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion
(
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
1998
).
2.
A.
Tarantola
,
Inverse Problem Theory and Methods for Model Parameter Estimation
(
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
2004
).
3.
J.
Dettmer
,
S. E.
Dosso
, and
J. C.
Osler
, “
Bayesian evidence computation for model selection in non-linear geoacoustic inference problems
,”
J. Acoust. Soc. Am.
128
(
6
),
3406
3415
(
2010
).
4.
W.
Sanders
, “
Estimation of error bounds in geoacoustic inversions
,”
J. Acoust. Soc. Am.
113
(
4
),
2191
2191
(
2003
).
5.
S. E.
Dosso
,
H.
Dong
, and
K.
Duffaut
, “
Model selection for profile structure in Bayesian geoacoustic inversion
,”
J. Acoust. Soc. Am.
141
(
5
),
3470
3470
(
2017
).
6.
M.
Blau
, “
Indirect measurement of multiple excitation force spectra by FRF matrix inversion: Influence of errors in statistical estimates of FRFs and response spectra
,”
Acustica
85
(
4
),
464
479
(
1999
).
7.
E.
Zhang
,
J.
Antoni
, and
P.
Feissel
, “
Bayesian force reconstruction with an uncertain model
,”
J. Sound Vib.
331
(
4
),
798
814
(
2012
).
8.
K. R.
James
and
D. R.
Dowling
, “
A probability density function method for acoustic field uncertainty analysis
,”
J. Acoust. Soc. Am.
118
(
5
),
2802
2810
(
2005
).
9.
D.
Battle
, “
Applications of Markov chain Monte Carlo methods in ocean acoustics
,”
J. Acoust. Soc. Am.
119
(
5
),
3343
3343
(
2006
).
10.
S. E.
Dosso
, “
Bayesian inversion methods in ocean geoacoustics
,”
J. Acoust. Soc. Am.
121
(
5
),
3170
3171
(
2007
).
11.
S. E.
Dosso
and
M. J.
Wilmut
, “
Bayesian source tracking in an uncertain ocean environment
,”
J. Acoust. Soc. Am.
125
(
4
),
2730
2730
(
2009
).
12.
S. E.
Dosso
, “
Bayesian localization, tracking, and environmental inference
,”
J. Acoust. Soc. Am.
139
(
4
),
2194
2195
(
2016
).
13.
Z.
Michalopoulou
, “
A Gibbs sampling approach to matched-field source localization and deconvolution
,”
J. Acoust. Soc. Am.
108
(
5
),
2646
2646
(
2000
).
14.
P. L.
Nielsen
and
S. E.
Dosso
, “
Bayesian inversion of propagation and reverberation data
,”
J. Acoust. Soc. Am.
120
(
5
),
3356
3356
(
2006
).
15.
Z.-H.
Michalopoulou
, “
Multiple source localization using a maximum a posteriori Gibbs sampling approach
,”
J. Acoust. Soc. Am.
120
(
5
),
2627
2634
(
2006
).
16.
M. Q.
Wu
and
M. J.
Crocker
, “
A statistical analysis of the estimation error of sound power measured by sound intensity techniques
,”
J. Acoust. Soc. Am.
80
(
S1
),
S119
S119
(
1986
).
17.
T.
Loyau
and
J.
Pascal
, “
Statistical errors in the estimation of the magnitude and direction of the complex acoustic intensity vector
,”
J. Acoust. Soc. Am.
97
(
5
),
2942
2962
(
1995
).
18.
J.
Ghan
,
B.
Cazzolato
, and
S.
Snyder
, “
Statistical errors in the estimation of time-averaged acoustic energy density using the two-microphone method
,”
J. Acoust. Soc. Am.
115
(
3
),
1179
1184
(
2004
).
19.
M. R.
Bai
,
J.-G.
Ih
, and
J.
Benesty
,
Acoustic Array Systems: Theory, Implementation, and Application
, 1st ed. (
Wiley-IEEE Press
,
New York
,
2013
).
20.
G. P.
Carroll
, “
The effect of sensor placement errors on cylindrical near-field acoustic holography
,”
J. Acoust. Soc. Am.
105
(
4
),
2269
2276
(
1999
).
21.
A. W.
van der Vaart
,
Asymptotic Statistics, in Cambridge Series in Statistical and Probabilistic Mathematics
(
Cambridge University Press
,
Cambridge
,
1998
), pp.
25
34
.
22.
J. A.
Scales
and
L.
Tenorio
, “
Prior information and uncertainty in inverse problems
,”
Geophysics
66
,
389
(
2001
).
23.
A. M.
Stuart
, “
Inverse problems: A Bayesian perspective
,”
Acta Numerica
19
,
451
559
(
2010
).
24.
J.
Antoni
, “
A Bayesian approach to sound source reconstruction: Optimal basis, regularization, and focusing
,”
J. Acoust. Soc. Am.
131
(
4
),
2873
2890
(
2012
).
25.
A.
Pereira
,
Q.
Leclère
, and
J.
Antoni
, “
A theoretical and experimental comparison of the equivalent source method and a Bayesian approach to noise source identification
,” in
Proceedings of Berlin Beamforming Conference
, Berlin (
2012
), pp.
1
12
.
26.
A.
Gelman
,
J. B.
Carlin
,
H. S.
Stern
, and
D. B.
Rubin
,
Bayesian Data Analysis
, 2nd ed. (
Chapman and Hall/CRC
,
New York
,
2004
).
27.
S.
Brooks
,
A.
Gelman
,
G.
Jones
, and
X.-L.
Meng
,
Handbook of Markov Chain Monte Carlo
(
CRC
,
Boca Raton, FL
,
2011
).
28.
S. E.
Dosso
, “
Quantifying uncertainty in geoacoustic inversion. I. A fast Gibbs sampler approach
,”
J. Acoust. Soc. Am.
111
(
1
),
129
142
(
2002
).
29.
S. E.
Dosso
and
P. L.
Nielsen
, “
Quantifying uncertainty in geoacoustic inversion. II. Application to broadband, shallow-water data
,”
J. Acoust. Soc. Am.
111
(
1
),
143
159
(
2002
).
30.
C.
Huang
,
P.
Gerstoft
, and
W. S.
Hodgkiss
, “
Influence of data uncertainty on matched-field geoacoustic inversion
,”
J. Acoust. Soc. Am.
115
(
5
),
2409
2409
(
2004
).
31.
R. T.
Muehleisen
, “
Use of the Monte Carlo method for uncertainty analysis of acoustic models and measurements
,”
J. Acoust. Soc. Am.
118
(
3
),
1890
1890
(
2005
).
32.
S. E.
Dosso
and
M. J.
Wilmut
, “
Uncertainty estimation in simultaneous Bayesian tracking and environmental inversion
,”
J. Acoust. Soc. Am.
124
(
1
),
82
97
(
2008
).
33.
E.
Zhang
,
J.
Antoni
,
B.
Dong
, and
H.
Snoussi
, “
Bayesian space-frequency separation of wide-band sound sources by a hierarchical approach
,”
J. Acoust. Soc. Am.
132
(
5
),
3240
3250
(
2012
).
34.
M. R.
Bai
,
A.
Agarwal
,
C.-C.
Chen
, and
Y.-C.
Wang
, “
Bayesian approach of nearfield acoustic reconstruction with particle filters
,”
J. Acoust. Soc. Am.
133
(
6
),
4032
4043
(
2013
).
35.
J.
Antoni
,
T. L.
Magueresse
,
Q.
Leclére
, and
P.
Simard
, “
Sparse acoustical holography from iterated Bayesian focusing
,”
J. Sound Vib.
446
,
289
325
(
2019
).
36.
M. E.
Tipping
, “
Sparse Bayesian learning and the relevance vector machine
,”
J. Mach. Learn. Res.
1
,
211
244
(
2001
).
37.
M. S.
Brandstein
,
J. E.
Adcock
, and
H. F.
Silverman
, “
Microphone–array localization error estimation with application to sensor placement
,”
J. Acoust. Soc. Am.
99
(
6
),
3807
3816
(
1996
).
38.
D. R.
Brillinger
,
Time Series: Data Analysis and Theory
(
Holt, Rinehart & Winston
,
New York
,
1975
).
39.
H.
Gzyl
,
The Method of Maximum Entropy
, Vol.
29
of Series on Advances in Mathematics for Applied Sciences (
World Scientific
,
Singapore
,
1995
).
40.
S.
Höhna
,
T. A.
Heath
,
B.
Boussau
,
M. J.
Landis
,
F.
Ronquist
, and
J. P.
Huelsenbeck
, “
Probabilistic graphical model representation in phylogenetics
,”
Syst. Biol.
63
(
5
),
753
771
(
2014
).
41.
R. A.
Levine
and
G.
Casella
, “
Optimizing random scan Gibbs samplers
,”
J. Multivar. Anal.
97
(
10
),
2071
2100
(
2006
).
42.
N. R.
Goodman
, “
The distribution of the determinant of a complex Wishart distributed matrix
,”
Ann. Math. Statist.
34
(
1
),
178
180
(
1963
).
43.
M. S.
Bartlett
, “
XX.—On the theory of statistical regression
,”
Proc. R. Soc. Edinburgh
53
,
260
283
(
1934
).
44.
X.
Wang
,
B.
Quost
,
J.-D.
Chazot
, and
J.
Antoni
, “
Estimation of multiple sound sources with data and model uncertainties using the EM and evidential EM algorithms
,”
Mech. Syst. Sign. Process.
66-67
,
159
177
(
2016
).
45.
L.
Gilquin
,
S.
Bouley
,
J.
Antoni
,
T. L.
Magueresse
, and
C.
Marteau
, “
Sensitivity analysis of two inverse methods: Conventional beamforming and Bayesian focusing
,”
J. Sound Vib.
455
,
188
202
(
2019
).
46.
D. E.
Johnson
and
V.
Hegemann
, “
Procedures to generate random matrices with noncentral distributions
,”
Commun. Stat.
3
(
7
),
691
699
(
1974
).
47.
D. V.
Lindley
,
Introduction to Probability and Statistics from a Bayesian Viewpoint
(
Cambridge University Press
,
Cambridge
,
1965
).
48.
P. M.
Lee
,
Bayesian Statistics—An Introduction
(
Arnold
,
London
,
2004
).
49.
S.
Roweis
, “
Gaussian identities
,” https://cs.nyu.edu/∼roweis/notes/gaussid.pdf (Last viewed 08/07/2019).
You do not currently have access to this content.